满分5 > 初中数学试题 >

如图1,在正方形ABCD中,E、F分别是BC,CD上的点,且∠EAF=45度.则...

manfen5.com 满分网如图1,在正方形ABCD中,E、F分别是BC,CD上的点,且∠EAF=45度.则有结论EF=BE+FD成立;
(1)如图2,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是BC,CD上的点,且∠EAF是∠BAD的一半,那么结论EF=BE+FD是否仍然成立?若成立,请证明;不成立,请说明理由.
(2)若将(1)中的条件改为:在四边形ABCD中,AB=AD,∠B+∠D=180°,延长BC到点E,延长CD到点F,使得∠EAF仍然是∠BAD的一半,则结论EF=BE+FD是否仍然成立?若成立,请证明;不成立,请写出它们的数量关系并证明.
(1)结论仍然成立.延长CB到G,使BG=FD,根据已知条件容易证明△ABG≌△ADF,由此可以推出∠BAG=∠DAF,AG=AF,而∠EAF=∠BAD,所以得到∠DAF+∠BAE=∠EAF,进一步得到∠EAF=∠GAE,现在可以证明△AEF≌△AEG,然后根据全等三角形的性质就可以证明结论成立; (2)结论不成立,应为EF=BE-DF,如图在CB上截取BG=FD,由于∠B+∠ADC=180°,∠ADF+∠ADC=180°,可以得到∠B=∠ADF,再利用已知条件可以证明△ABG≌△ADF,由此可以推出∠BAG=∠DAF,AG=AF,而∠EAF=∠BAD,所以得到∠EAF=∠GAE,现在可以证明△AEF≌△AEG,再根据全等三角形的性质就可以证明EF=EG=EB-BG=EB-DF. 【解析】 (1)延长CB到G,使BG=FD,连接AG, ∵∠ABG=∠D=90°,AB=AD, ∴△ABG≌△ADF, ∴∠BAG=∠DAF,AG=AF, ∵∠EAF=∠BAD, ∴∠DAF+∠BAE=∠EAF, ∴∠EAF=∠GAE, ∴△AEF≌△AEG, ∴EF=EG=EB+BG=EB+DF. (2)结论不成立,应为EF=BE-DF, 证明:在BE上截取BG,使BG=DF,连接AG. ∵∠B+∠ADC=180°,∠ADF+∠ADC=180°, ∴∠B=∠ADF. ∵AB=AD, ∴△ABG≌△ADF. ∴∠BAG=∠DAF,AG=AF. ∴∠BAG+∠EAD=∠DAF+∠EAD =∠EAF= 1 2 ∠BAD. ∴∠GAE=∠EAF. ∵AE=AE, ∴△AEG≌△AEF. ∴EG=EF ∵EG=BE-BG ∴EF=BE-FD.
复制答案
考点分析:
相关试题推荐
如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=4manfen5.com 满分网,∠B=45°.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.
(1)求BC的长;
(2)当MN∥AB时,求t的值;
(3)试探究:t为何值时,△MNC为等腰三角形.

manfen5.com 满分网 查看答案
如图,已知一次函数y=kx+b的图象经过A(-2,-1),B(1,3)两点,并且交x轴于点C,交y轴于点D.
(1)求该一次函数的解析式;
(2)求tan∠OCD的值;
(3)求证:∠AOB=135度.

manfen5.com 满分网 查看答案
已知:如图,D是AC上一点,BE∥AC,BE=AD,AE分别交BD、BC于点F、G,∠1=∠2.
(1)图中哪个三角形与△FAD全等?证明你的结论;
(2)探索线段BF、FG、EF之间的关系,并说明理由.

manfen5.com 满分网 查看答案
正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则Bn的坐标是   
manfen5.com 满分网 查看答案
如图,已知Rt△ABC中,AC=3,BC=4,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A2⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段CA1,A1C1,C1A2,…,则CA1=    manfen5.com 满分网=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.