满分5 > 初中数学试题 >

小平所在的学习小组发现,车辆转弯时,能否顺利通过直角弯道的标准是,车辆是否可以行...

小平所在的学习小组发现,车辆转弯时,能否顺利通过直角弯道的标准是,车辆是否可以行驶到和路的边界夹角是45°的位置(如图1中=2\×GB3 ②的位置).例如,图2是某巷子的俯视图,巷子路面宽4m,转弯处为直角,车辆的车身为矩形ABCD,CD与DE、CE的夹角都是45°时,连接EF,交CD于点G,若GF的长度至少能达到车身宽度,即车辆能通过.
(1)小平认为长8m,宽3m的消防车不能通过该直角转弯,请你帮他说明理由;
(2)小平提出将拐弯处改为圆弧(manfen5.com 满分网manfen5.com 满分网是以O为圆心,分别以OM和ON为半径的弧),长8m,宽3m的消防车就可以通过该弯道了,具体的方案如图3,其中OM⊥OM′,你能帮小平算出,ON至少为多少时,这种消防车可以通过该巷子?
manfen5.com 满分网
(1)过点F作FH⊥EC于点H,根据道路的宽度求出FH=EH=4m,然后根据等腰直角三角形的性质求出EF、GE的长度,相减即可得到GF的长度,如果不小于车身宽度,则消防车能通过,否则,不能通过; (2)假设车身C、D分别与点M′、M重合,根据等腰直角三角形的性质求出OG=CD=4,OC=CG=4,然后求出OF的长度,从而求出可以通过的车宽FG的长度,如果不小于车宽,则消防车能够通过,否则,不能通过;设ON=x,表示出OC=x+4,OG=x+3,又OG=CD=4,在Rt△OCG中,利用勾股定理列式进行计算即可求出ON的最小值. 【解析】 (1)消防车不能通过该直角转弯. 理由如下:如图,作FH⊥EC,垂足为H, ∵FH=EH=4, ∴EF=4,且∠GEC=45°, ∵GC=4, ∴GE=GC=4, ∴GF=4-4<3, 即GF的长度未达到车身宽度, ∴消防车不能通过该直角转弯; (2)若C、D分别与M′、M重合,则△OGM为等腰直角三角形, ∴OG=4,OM=4, ∴OF=ON=OM-MN=4-4, ∴FG=OG-OF=×8-(4-4)=8-4<3, ∴C、D在上, 设ON=x,连接OC,在Rt△OCG中, OG=x+3,OC=x+4,CG=4, 由勾股定理得,OG2+CG2=OC2, 即(x+3)2+42=(x+4)2, 解得x=4.5. 答:ON至少为4.5米.
复制答案
考点分析:
相关试题推荐
为了更好地治理洋澜湖水质,保护环境,市治污公司决定购买10台,污水处理设备,现有A,B两种型号的设备,其中每台的价格,同处理污水量如下表:
A型B型
价格(万元/台)ab
处理污水量(吨/月)240200
经调查:购买一台A型号设备比购买一台B型号设备多2万元,购买2台A型设备比购买3台B型号设备少6万元.
(1)求a,b的值;
(2)经预算:使治污公司购买污水处理设备的资金不超过105万元,若每月要求处理洋澜湖的污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.
查看答案
如图,△ABC中,AB=4,AC=2,BC=2manfen5.com 满分网,以BC为直径的半圆交AB于点D,以A为圆心,AC为半径的扇形交AB于点E.
(1)以BC为直径的圆与AC所在的直线有何位置关系?请说明理由;
(2)求图中阴影部分的面积(结果可保留根号和π).

manfen5.com 满分网 查看答案
武汉银河影院对去年贺岁片《非诚勿拢》的售票情况进行调查:若票价定为20元/张,则每场可卖电影票400张,若单价每涨1元,每场就少售出8张,设每张票涨价x元(x为正整数).
(1)求每场的收入y与x的函数关系式;
(2)设某场的收入为9000元,此收入是否是最大收入?请说明理由;
(3)请借助图象分析,售价在什么范围内每趟的总收入不低于8000元?
查看答案
A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间 x(小时)之间的函数图象.
(1)求甲车返回过程中y与x之间的函数解析式,并写出函数的定义域;
(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.

manfen5.com 满分网 查看答案
如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为40千米/时,受影响区域的半径为260千米,B市位于点P的北偏东75°方向上,距离P点480千米.
(1)说明本次台风是否会影响B市;
(2)若这次台风会影响B市,求B市受台风影响的时间.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.