为了美化校园环境,建设绿色校园,某学校准备对校园中30亩空地进行绿化.绿化采用种植草皮与种植树木两种方式,要求种植草皮与种植树木的面积都不少于10亩,并且种植草皮面积不少于种植树木面积的
.已知种植草皮与种植树木每亩的费用分别为8000元与12000元.
(1)种植草皮的最小面积是多少?
(2)种植草皮的面积为多少时绿化总费用最低,最低费用为多少?
考点分析:
相关试题推荐
有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字-1,-2和2.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).
(1)用列表或画树状图的方法写出点Q的所有可能坐标;
(2)求点Q落在直线y=x-3上的概率.
查看答案
(1)如图1,已知▱ABCD中,E为AD的中点,CE的延长线交BA的延长线于点F.求证:CD=FA.
(2)如图2,在小山东侧的A庄有一热气球,由于受西风的影响,以每分钟35米的速度沿着与水平方向成75°角的方向飞行,40分钟时到达C处.此时气球上的人发现气球与山顶P点及小山西侧的B庄在一条直线上,同时测得B庄的俯角为30°.又在A庄测得山顶P的仰角为45°.求A庄与B庄的距离及山高.(保留准确值)
查看答案
(1)计算:
+tan60°-(
)
-1 (2)解方程:
-
=0.
查看答案
如图,以等腰三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA
1,再以等腰直角三角形ABA
1的斜边为直角边向外作第3个等腰直角三角形A
1BB
1,…,如此作下去,若OA=OB=1,则第n个等腰直角三角形的面积S
n=
.
查看答案
如图所示的运算程序中,若开始输入的x值为18,我们发现第1次输出的结果为9,第2次输出的结果为12,…,第2011次输出的结果为
.
查看答案