满分5 > 初中数学试题 >

已知:关于x的一元二次方程x2+(2k-1)x+k2=0的两根x1,x2满足x1...

已知:关于x的一元二次方程x2+(2k-1)x+k2=0的两根x1,x2满足x12-x22=0,双曲线manfen5.com 满分网(x>0)经过Rt△OAB斜边OB的中点D,与直角边AB交于C(如图),求S△OBC

manfen5.com 满分网
首先由一元二次方程根的判别式得出k的取值范围,然后由x12-x22=0得出x1-x2=0或x1+x2=0,再运用一元二次方程根与系数的关系求出k的值,由k的几何意义,可知S△OCA=|k|.如果过D作DE⊥OA于E,则S△ODE=|k|.易证△ODE∽△OBA,根据相似三角形的面积比等于相似比的平方,得出S△OBA,最后由S△OBC=S△OBA-S△OCA,得出结果. 【解析】 ∵x2+(2k-1)x+k2=0有两根, ∴△=(2k-1)2-4k2≥0, 即. 由x12-x22=0得:(x1-x2)(x1+x2)=0. 当x1+x2=0时,-(2k-1)=0,解得,不合题意,舍去; 当x1-x2=0时,x1=x2,△=(2k-1)2-4k2=0, 解得:符合题意. ∵y=, ∴双曲线的解析式为:. 过D作DE⊥OA于E,则. ∵DE⊥OA,BA⊥OA, ∴DE∥AB,∴△ODE∽△OBA, ∴,∴, ∴.
复制答案
考点分析:
相关试题推荐
边长为1的正方形OA1B1C1的顶点A1在X轴的正半轴上,如图将正方形OA1B1C1绕顶点O顺时针旋转75°得正方形OABC,使点B恰好落在函数y=ax2(a<0)的图象上,则a的值为   
manfen5.com 满分网 查看答案
按如图所示,把一张边长超过10的正方形纸片剪成5个部分,则中间小正方形(阴影部分)的周长为   
manfen5.com 满分网 查看答案
如图,把正△ABC的外接圆对折,使点A落在弧BC的中点F上,若BC=5,则折痕在△ABC内的部分DE长为   
manfen5.com 满分网 查看答案
如图,在半圆O中,直径AE=10,四边形ABCD是平行四边形,且顶点A、B、C在半圆上,点D在直径AE上,连接CE,若AD=8,则CE长为   
manfen5.com 满分网 查看答案
如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合.展开后,折痕DE分别交AB,AC于点E,G.连接GF.下列结论:①∠AGD=112.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG.其中正确结论的序号是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.