满分5 >
初中数学试题 >
(-2)2的算术平方根是( ) A.2 B.±2 C.-2 D.
(-2)
2的算术平方根是( )
A.2
B.±2
C.-2
D.
考点分析:
相关试题推荐
在实数0,-
,
,|-2|中,最小的是( )
A.
B.-
C.0
D.|-2|
查看答案
在平面直角坐标中,边长为1的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转.旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图1).
(1)求边AB在旋转过程中所扫过的面积;
(2)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论;
(3)设MN=m,当m为何值时△OMN的面积最小,最小值是多少?并直接写出此时△BMN内切圆的半径.
查看答案
如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.
(1)求证:△AMB≌△ENB;
(2)①当M点在何处时,AM+CM的值最小;
②当M点在何处时,AM+BM+CM的值最小,并说明理由;
(3)当AM+BM+CM的最小值为
时,求正方形的边长.
查看答案
已知 A(-4,0)B (0,4)以A点为位似中心将OB向右侧放大,得到点B的对应点C,且
.
(1)求C点的坐标;
(2)若抛物线经过B、C两点,且顶点落在x轴的正半轴上,求抛物线的解析式.
(3)点P在(2)中的抛物线上,且到直线AB的距离为
,求点P的坐标.
查看答案
在平面直角坐标系中,将直线l:
沿x轴翻折,得到一条新直线与x轴交于点A,与y轴交于点B,将抛物线C
1:
沿x轴平移,得到一条新抛物线C
2与y轴交于点D,与直线AB交于点E、点F.
(1)求直线AB的解析式;
(2)若线段DF∥x轴,求抛物线C
2的解析式;
(3)在(2)的条件下,若点F在y轴右侧,过F作FH⊥x轴于点G,与直线l交于点H,一条直线m(m不过△AFH的顶点)与AF交于点M,与FH交于点N,如果直线m既平分△AFH的面积,又平分△AFH的周长,求直线m的解析式.
查看答案