满分5 > 初中数学试题 >

如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE....

如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
(1)求证:CE=CF;
(2)在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
(3)运用(1)(2)解答中所积累的经验和知识,完成下题:
如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,求DE的长.
manfen5.com 满分网manfen5.com 满分网
(1)利用已知条件,可证出△BCE≌△DCF(SAS),即CE=CF. (2)借助(1)的全等得出∠BCE=∠DCF,∴∠GCF=∠BCE+∠DCG=90°-∠GCE=45°,即∠GCF=∠GCE,又因为CE=CF,CG=CG,∴△ECG≌△FCG,∴EG=GF,∴GE=DF+GD=BE+GD. (3)过C作CG⊥AD,交AD延长线于G,先证四边形ABCG是正方形(有一组邻边相等的矩形是正方形). 再设DE=x,利用(1)、(2)的结论,在Rt△AED中利用勾股定理可求出DE. (1)证明:在正方形ABCD中, ∵BC=CD,∠B=∠CDF,BE=DF, ∴△CBE≌△CDF. ∴CE=CF. (2)【解析】 GE=BE+GD成立. ∵△CBE≌△CDF, ∴∠BCE=∠DCF. ∴∠ECD+∠ECB=∠ECD+∠FCD. 即∠ECF=∠BCD=90°. 又∠GCE=45°, ∴∠GCF=∠GCE=45°. ∵CE=CF,∠GCF=∠GCE,GC=GC, ∴△ECG≌△FCG. ∴EG=GF. ∴GE=DF+GD=BE+GD. (3)【解析】 过C作CG⊥AD,交AD延长线于G, 在直角梯形ABCD中, ∵AD∥BC,∠A=∠B=90°, 又∠CGA=90°,AB=BC, ∴四边形ABCG为正方形. ∴AG=BC=12. 已知∠DCE=45°,根据(1)(2)可知,ED=BE+DG, 设DE=x,则DG=x-4, ∴AD=AG-DG=16-x,AE=AB-BE=12-4=8. 在Rt△AED中 ∵DE2=AD2+AE2,即x2=(16-x)2+82 解得:x=10. ∴DE=10.
复制答案
考点分析:
相关试题推荐
随着生活水平的逐步提高,某单位的私家小轿车越来越多,为确保有序停车,单位决定筹集资金维修和新建一批停车棚.该单位共有42辆小轿车,准备维修和新建的停车棚共有6个,费用和可供停车的辆数及用地情况如下表:
停车棚费用(万元/个)可停车的辆数(辆/个)占地面积(m2/个)
新建48100
维修3680
已知可支配使用土地面积为580m2,若新建停车棚x个,新建和维修的总费用为y万元.
(1)求y与x之间的函数关系;
(2)满足要求的方案有几种?
(3)为确保工程顺利完成,单位最少需要出资多少万元.
查看答案
市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,划分等级后的数据整理如下表:
等级非常了解比较了解基本了解不太了解
频数40120364
频率0.2m0.180.02
(1)本次问卷调查取样的样本容量为______,表中的m值为______
(2)根据表中的数据计算等级为“非常了解”的频数在扇形统计图所对应的扇形的圆心角的度数,并补全扇形统计图;
(3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?


manfen5.com 满分网 查看答案
一个几何体的三视图如图所示,其中主视图和俯视图都是矩形.
(1)请写出这个几何体的名称.
(2)求这个几何体的侧面积和表面积.

manfen5.com 满分网 查看答案
在如图的方格纸中,每个小正方形的边长都为l.
(1)画出将△A1B1C1,沿直线DE方向向上平移5格得到的△A2B2C2
(2)要使△A2B2C2与△CC1C2重合,则△A2B2C2绕点C2顺时针方向旋转,至少要旋转多少度?(直接写出答案)
(3)在条件(2)中,计算△A2B2C2扫过的面积.

manfen5.com 满分网 查看答案
如图,有一段斜坡BC长为10米,坡角∠CBD=10°,为使残疾人的轮椅车通行更省力,现准备把坡角降为5°.
(1)求斜坡新起点A到原起点B的距离;
(2)求坡高CD(结果保留3个有效数字).
参考数据:sin10°=0.1736,cos10°=0.9848,tan10°=0.1763.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.