满分5 > 初中数学试题 >

如图,抛物线y=ax2+bx+c(a>0)交x轴于A、B两点(A点在B点左侧),...

如图,抛物线y=ax2+bx+c(a>0)交x轴于A、B两点(A点在B点左侧),交y轴于点C.已知B(8,0),tan∠ABC=manfen5.com 满分网,△ABC的面积为8.
(1)求抛物线的解析式;
(2)若动直线EF(EF∥x轴)从点C开始,以每秒1个长度单位的速度沿y轴负方向平移,且交y轴、线段BC于E、F两点,动点P同时从点B出发,在线段OB上以每秒2个单位的速度向原点O运动.连接FP,设运动时间t秒.当t为何值时,manfen5.com 满分网的值最大,求出最大值;
(3)在满足(2)的条件下,是否存在t的值,使以P、B、F为顶点的三角形与△ABC相似.若存在,试求出t的值;若不存在,请说明理由.
manfen5.com 满分网
(1)求出A,B,C,三点的坐标代入抛物线y=ax2+bx+c,问题得解. (2)利用相似三角形得到,和t的关系式问题得解. (3)因为相似对应的不唯一性,需要讨论,分别求出满足题意的t的值. 【解析】 (1)由题意知∠COB=90°B(8,0)OB=8, 在Rt△OBC中tan∠ABC=OC=OB×tan∠ABC=8×=4, ∴C(0,4),, ∴AB=4, ∴A(4,0) 把A、B、C三点的坐标代入y=ax2+bx+c(a>0)得, 解得.所以抛物线的解析式为; (2)C(0,4)B(8,0)E(0,4-t)(t>0), OB=2OC=8CE=tBP=2tOP=8-2t, ∵EF∥OB, ∴△CEF∽△COB, ∴, 则有得EF=2t, =. 当t=2时有最大值2. (3)存在符合条件的t值,使△PBF与△ABC相似. C(0,4),B(8,0),E(0,4-t),F(2t,4-t),P(8-2t,0)(t>0), AB=4BP=2t,BF=, ∵OC=4, ∴BC=. ①当点P与A、F与C对应,即△PBF∽△ABC, 则, 代入得, 解得; ②当点P与C、F与A对应,即△PBF∽△CBA, 则, 代入得, 解得(不合题意,舍去). 综上所述:符合条件的和.
复制答案
考点分析:
相关试题推荐
如图①,将一张直角三角形纸片△ABC折叠,使点A与点C重合,这时DE为折痕,△CBE为等腰三角形;再继续将纸片沿△CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样两个矩形为“叠加矩形”.
(1)如图②,正方形网格中的△ABC能折叠成“叠加矩形”吗?如果能,请在图②中画出折痕;
(2)如图③,在正方形网格中,以给定的BC为一边,画出一个斜三角形ABC,使其顶点A在格点上,且△ABC折成的“叠加矩形”为正方形;
(3)若一个三角形所折成的“叠加矩形”为正方形,那么它必须满足的条件是什么?
manfen5.com 满分网
查看答案
如图,甲船从港口A出发沿北偏东15°方向行驶,同时,乙船也从港口A出发沿西北方向行驶.若干小时之后,甲船位于点C处,乙船位于港口B的北偏东60°方向,距离岸BD边10海里的P处.并且观测到此时点B、P、C在同一条直线上.求甲船航行的距离AC为多少海里(结果保留根号)?

manfen5.com 满分网 查看答案
如图,一次函数y=kx+b与反比例函数manfen5.com 满分网的图象相交于A,B两点,且与坐标轴的交点为(-6,0),(0,6),点B的横坐标为-4,
(1)试确定反比例函数的解析式;
(2)求AOB的面积;
(3)直接写出不等式manfen5.com 满分网的解.

manfen5.com 满分网 查看答案
已知manfen5.com 满分网,先化简,再求manfen5.com 满分网的值.
查看答案
如图,字母S由两条圆弧KL、MN和线段LM组成,这两条圆弧每一条都是一个半径为1的圆的圆周的manfen5.com 满分网,线段LM与两个圆相切.K和N分别是两个圆的切点,则线段LM的长为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.