首先作出辅助线连接DB,延长DA到F,使AD=AF,连接FC.根据三角形中位线定理可得AE=CF,再利用勾股定理求出BD的长,然后证明可得到△FDC≌△BCD,从而得到FC=DB,进而得到答案.
【解析】
连接DB,延长DA到F,使AD=AF.连接FC,
∵AD=5,
∴AF=5,
∵点E是CD的中点,
∴AE=CF,
在Rt△ABD中,
AD2+AB2=DB2,
∴BD==13,
∵AB⊥BC,AB⊥AD,
∴AD∥BC,
∴∠ADC=∠BCD,
又∵DF=BC,DC=DC,
∴△FDC≌△BCD,
∴FC=DB=13,
∴AE=.
故答案为:.