满分5 > 初中数学试题 >

如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一...

如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
解答下列问题:
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图乙,线段CF,BD之间的位置关系为______,数量关系为______
②当点D在线段BC的延长线时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.
试探究:当△ABC满足一个什么条件时,CF⊥BC(点C,F重合除外)画出相应图形,并说明理由.(画图不写作法)
(3)若AC=2manfen5.com 满分网,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.
manfen5.com 满分网
(1)可通过证明三角形ABC和三角形ACF全等来实现.因为AD=AF,AB=AC,只要证明∠BAD=∠CAF即可,∠BAD=90°-∠DAC=∠FAC,这样就构成了全等三角形判定中的SAS,△ABD≌△ACF,因此BC=CF,∠B=∠ACF,因为∠B+∠ACB=90°,那么∠ACF+ACD=90°,即FC⊥BC,也就是FC⊥BD. (2)可通过构建三角形来求解.过点A作AG⊥AC交BC于点G,如果CF⊥BD,那么∠ACF=∠AGD=90°-∠ACD,又因为∠GAD=∠CAE=90°-∠CAD.AG=AC那么根据AAS可得出△AGD≌△ACF,AG=AC,又因为∠GAC=90°,可得出∠BCA=45°. 因此△BAC满足∠BCA=45°时,CF⊥BD. (3)过点A作AQ⊥BC交BC的延长线于点Q,通过构建与线段相关的三角形相似来求解. 图中我们可以看出∠ADQ+∠PDC=90°,那么很容易就能得出,∠QAD=∠PDC,那么就能得出直角三角形ADQ∽直角三角形PDC,那么可得出关于CP、CD、AQ、QD的比例关系,因为∠BCA=45°,∠Q=90°,那么AQ=QC=2,如果设CD=x,那么可用x表示出CD、QD,又知道AQ的值和CP、CD、QD、AQ的比例关系,那么可得出关于CP和x的函数关系式,然后根据函数的性质和x的取值范围求出CP的最大值. 【解析】 (1)①CF与BD位置关系是垂直,数量关系是相等 ②当点D在BC的延长线上时①的结论仍成立 由正方形ADEF得AD=AF,∠DAF=90度 ∵∠BAC=90°, ∴∠DAF=∠BAC, ∴∠DAB=∠FAC 又∵AB=AC, ∴△DAB≌△FAC, ∴CF=BD ∠ACF=∠ABD ∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45° ∴∠BCF=∠ACB+∠ACF=90°.即CF⊥BD. (2)当∠BCA=45°时,CF⊥BD(如图) 理由是:过点A作AG⊥AC交BC于点G,∴AC=AG 可证:△GAD≌△CAF∴∠ACF=∠AGD=45° ∠BCF=∠ACB+∠ACF=90°, 即CF⊥BD. (3)当具备∠BCA=45°时, 过点A作AQ⊥BC交CB的延长线于点Q,(如图), ∵DE与CF交于点P时,此时点D位于线段CQ上, ∵∠BCA=45°,AC=2, ∴由勾股定理可求得AQ=CQ=2. 设CD=x,∴DQ=2-x, ∵∠ADB+∠ADE+∠PDC=180° 且∠ADE=90°, ∴∠ADQ+∠PDC=90°, 又∵在直角△PCD中,∠PDC+∠DPC=90° ∴∠ADQ=∠DPC, ∵∠AQD=∠DCP=90° ∴△AQD∽△DCP, ∴=,∴. ∴CP=x2+x=(x-1)2+. ∵0<x≤, ∴当x=1时,CP有最大值.
复制答案
考点分析:
相关试题推荐
如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽中的水匀速注人乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:
(1)图2中折线ABC表示______槽中水的深度与注水时间之间的关系,线段DE表示______槽中水的深度与注水时间之间的关系(以上两空选塡“甲”或“乙”),点B的纵坐标表示的实际意义是______
(2)注水多长时间时,甲、乙两个水槽中水的深度相同?
(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;
(4)若乙槽中铁块的体积为112立方厘米,求甲槽底面积(壁厚不计).(直接写成结果)
manfen5.com 满分网
查看答案
王大爷要围成一个矩形花圃.花圃的一边利用20米长的墙,另三边用总长为36米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD.设AB边的长为x米,且BC>AB.矩形ABCD的面积为S平方米.
(1)求S与x之间的函数关系式(要求直接写出自变量x的取值范围);
(2)根据题中要求,所围花圃面积能否是154米2,若能,求出的x值; 若不能,请说明理由.

manfen5.com 满分网 查看答案
如图,已知△ABC位于平面直角坐标系内,且三个顶点均在正方形的网格的顶点上.
(1)将△ABC顶点A、B、C的横、纵坐标分别乘以-2,依次作为点A1、B1、C1的横、纵坐标,画出△A1B1C1
(2)将△A1B1C1向下平移2个单位,再向右平移2个单位,得到△A2B2C2,画出△A2B2C2,并写出B1的对应点B2的坐标.manfen5.com 满分网
查看答案
“十二五”基础教育发展改革纲指出:加快中小学信息技术的普及和运用.为了更深层次的了解学生对信息技术的需求,逸夫中学对九年级毕业生进行了“信息技术进校园,谁受益”为主题的问卷调查,并将调查结果分析整理后制成了如下的两个不完整的统计图.
(1)求该校九年级毕业生共多少人?
(2)请补全扇形统计图和条形图;
(3)若该校共有学生1000人,求支持有“信息技术进校园,影响学习”的约有多少人?manfen5.com 满分网
查看答案
先化简,在求代数式manfen5.com 满分网÷(manfen5.com 满分网)的值,其中x=2cos30°,y=2sin45°.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.