满分5 > 初中数学试题 >

如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(...

如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.
manfen5.com 满分网
(1)求抛物线的解析式;
(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;
(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.
(1)已知抛物线过A、B两点,可将两点的坐标代入抛物线的解析式中,用待定系数法即可求出二次函数的解析式; (2)可根据(1)的函数解析式得出抛物线的对称轴,也就得出了M点的坐标,由于C是抛物线与y轴的交点,因此C的坐标为(0,3),根据M、C的坐标可求出CM的距离.然后分三种情况进行讨论: ①当CP=PM时,P位于CM的垂直平分线上.求P点坐标关键是求P的纵坐标,过P作PQ⊥y轴于Q,如果设PM=CP=x,那么直角三角形CPQ中CP=x,OM的长,可根据M的坐标得出,CQ=3-x,因此可根据勾股定理求出x的值,P点的横坐标与M的横坐标相同,纵坐标为x,由此可得出P的坐标. ②当CM=MP时,根据CM的长即可求出P的纵坐标,也就得出了P的坐标(要注意分上下两点). ③当CM=CP时,因为C的坐标为(0,3),那么直线y=3必垂直平分PM,因此P的纵坐标是6,由此可得出P的坐标; (3)由于四边形BOCE不是规则的四边形,因此可将四边形BOCE分割成规则的图形进行计算,过E作EF⊥x轴于F,四边形BOCE的面积=三角形BFE的面积+直角梯形FOCE的面积.直角梯形FOCE中,FO为E的横坐标的绝对值,EF为E的纵坐标,已知C的纵坐标,就知道了OC的长.在三角形BFE中,BF=BO-OF,因此可用E的横坐标表示出BF的长.如果根据抛物线设出E的坐标,然后代入上面的线段中,即可得出关于四边形BOCE的面积与E的横坐标的函数关系式,根据函数的性质即可求得四边形BOCE的最大值及对应的E的横坐标的值.即可求出此时E的坐标. 【解析】 (1)由题知: 解得: ∴所求抛物线解析式为: y=-x2-2x+3; (2)∵抛物线解析式为: y=-x2-2x+3, ∴其对称轴为x==-1, ∴设P点坐标为(-1,a),当x=0时,y=3, ∴C(0,3),M(-1,0) ∴当CP=PM时,(-1)2+(3-a)2=a2,解得a=, ∴P点坐标为:P(-1,); ∴当CM=PM时,(-1)2+32=a2,解得a=±, ∴P点坐标为:P(-1,)或P(-1,-); ∴当CM=CP时,由勾股定理得:(-1)2+32=(-1)2+(3-a)2,解得a=6, ∴P点坐标为:P(-1,6) 综上所述存在符合条件的点P,其坐标为P(-1,)或P(-1,-) 或P(-1,6)或P(-1,); (3)过点E作EF⊥x轴于点F,设E(a,-a2-2a+3)(-3<a<0) ∴EF=-a2-2a+3,BF=a+3,OF=-a ∴S四边形BOCE=BF•EF+(OC+EF)•OF =(a+3)•(-a2-2a+3)+(-a2-2a+6)•(-a) = =-+ ∴当a=-时,S四边形BOCE最大,且最大值为. 此时,点E坐标为(-,).
复制答案
考点分析:
相关试题推荐
如图①所示,在直角梯形ABCD中,∠BAD=90°,E是直线AB上一点,过E作直线l∥BC,交直线CD于点F.将直线l向右平移,设平移距离BE为t(t≥0),直角梯形ABCD被直线l扫过的面积(图中阴影部分)为S,S关于t的函数图象如图②所示,OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为4.
manfen5.com 满分网
信息读取
(1)梯形上底的长AB=______
(2)直角梯形ABCD的面积=______
图象理解
(3)写出图②中射线NQ表示的实际意义;
(4)当2<t<4时,求S关于t的函数关系式;
问题解决
(5)当t为何值时,直线l将直角梯形ABCD分成的两部分面积之比为1:3.
查看答案
(1)如图(1),OA、OB是⊙O的两条半径,且OA⊥OB,点C是OB延长线上任意一点,过点C作CD切⊙O于点D,连接AD交OC于点E.
求证:CD=CE;
(2)若将图(2)中的半径OB所在直线向上平行移动交OA于F,交⊙O于B′,其他条件不变,那么上述结论CD=CE还成立吗?为什么?
(3)若将图(3)中的半径OB所在直线向上平行移动到⊙O外的CF,点E是DA的延长线与CF的交点,其他条件不变,那么上述结论CD=CE还成立吗?为什么?
manfen5.com 满分网
查看答案
如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度为manfen5.com 满分网(即tan∠PAB=manfen5.com 满分网),且O,A,B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器的高度忽略不计,结果保留根号形式)

manfen5.com 满分网 查看答案
甲、乙两超市(大型商场)同时开业,为了吸引顾客,都举行有奖酬宾活动:凡购物满100元,均可得到一次摸奖的机会.在一个纸盒里装有2个红球和2个白球,除颜色外其它都相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少.(如下表)
甲超市:
两红一红一白两白
礼金券(元)5105
乙超市:
两红一红一白两白
礼金券(元)10510
(1)用树状图表示得到一次摸奖机会时中礼金券的所有情况;
(2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由.
查看答案
如图,在平面直角坐标系xOy中,矩形OEFG的顶点E的坐标为(4,0),顶点G的坐标为(0,2),将矩形OEFG绕点O逆时针旋转,使点F落在y轴的点N处,得到矩形OMNP,OM与GF交于点A.
(1)判断△OGA和△OMN是否相似,并说明理由;
(2)求图象经过点A的反比例函数的解析式;
(3)设(2)中的反比例函数图象交EF于点B,求直线AB的解析式.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.