满分5 > 初中数学试题 >

在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2BC=2CD,对角线...

在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2BC=2CD,对角线AC与BD相交于点O,线段OA,OB的中点分别为E,F.
(1)求证:△FOE≌△DOC;
(2)求sin∠OEF的值;
(3)若直线EF与线段AD,BC分别相交于点G,H,求manfen5.com 满分网的值.

manfen5.com 满分网
(1)由EF是△OAB的中位线,利用中位线定理,得EF∥AB,EF=AB,又CD∥AB,CD=AB,可得EF=CD,由平行线的性质可证△FOE≌△DOC; (2)由平行线的性质可知∠OEF=∠CAB,利用sin∠OEF=sin∠CAB=,由勾股定理得出AC与BC的关系,再求正弦值; (3)由(1)可知AE=OE=OC,EF∥CD,则△AEG∽△ACD,利用相似比可得EG=CD,同理得FH=CD,又AB=2CD,代入中求值. (1)证明:∵EF是△OAB的中位线, ∴EF∥AB,EF=AB, 而CD∥AB,CD=AB, ∴EF=CD,∠OEF=∠OCD,∠OFE=∠ODC, ∴△FOE≌△DOC; (2)【解析】 ∵EF∥AB, ∴∠OEF=∠CAB, ∵在Rt△ABC中,AC===BC, ∴sin∠OEF=sin∠CAB===; (3)【解析】 ∵AE=OE=OC,EF∥CD, ∴△AEG∽△ACD, ∴==,即EG=CD, 同理FH=CD, ∴==.
复制答案
考点分析:
相关试题推荐
如图,在直角坐标系中,直线OA与双曲线交于点A(2,2),求:
(1)直线OA与双曲线的函数解析式;
(2)将直线OA向上平移3个单位后,求直线与双曲线的交点C,D的坐标;
(3)求△COD的面积.

manfen5.com 满分网 查看答案
甲口袋中装有两个相同的小球,它们的标号分别为2和7,乙口袋中装有两个相同的小球,它们的标号分别为4和5,丙口袋中装有三个相同的小球,它们的标号分别为3,8,9.从这3个口袋中各随机地取出1个小球.
(1)求取出的3个小球的标号全是奇数的概率是多少?
(2)以取出的三个小球的标号分别表示三条线段的长度,求这些线段能构成三角形的概率.
查看答案
先化简,再求值:manfen5.com 满分网,其中a=2+manfen5.com 满分网
查看答案
如图,热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为66 m,这栋高楼有多高?(结果精确到0.1 m,参考数据:manfen5.com 满分网≈1.73)

manfen5.com 满分网 查看答案
(1)计算:manfen5.com 满分网
(2)解不等式组manfen5.com 满分网并在数轴上表示解集,并求它的最大整数解.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.