满分5 > 初中数学试题 >

如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2,与y轴交...

如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2,与y轴交于点C(0,-4),其中x1,x2是方程x2-4x-12=0的两个根.
(1)求抛物线的解析式;
(2)点M是线段AB上的一个动点,过点M作MN∥BC,交AC于点N,连接CM,当△CMN的面积最大时,求点M的坐标;
(3)点D(4,k)在(1)中抛物线上,点E为抛物线上一动点,在x轴上是否存在点F,使以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)根据一元二次方程解法得出A,B两点的坐标,再利用交点式求出二次函数解析式; (2)首先判定△MNA∽△BCA.得出,进而得出函数的最值; (3)分别根据当AF为平行四边形的边时,AF平行且等于DE与当AF为平行四边形的对角线时,分析得出符合要求的答案. 【解析】 (1)∵x2-4x-12=0, ∴x1=-2,x2=6. ∴A(-2,0),B(6,0), 又∵抛物线过点A、B、C,故设抛物线的解析式为y=a(x+2)(x-6), 将点C的坐标代入,求得, ∴抛物线的解析式为; (2)设点M的坐标为(m,0),过点N作NH⊥x轴于点H(如图(1)). ∵点A的坐标为(-2,0),点B的坐标为(6,0), ∴AB=8,AM=m+2, ∵MN∥BC,∴△MNA∽△BCA. ∴, ∴, ∴, ∴, =, =. ∴当m=2时,S△CMN有最大值4. 此时,点M的坐标为(2,0); (3)∵点D(4,k)在抛物线上, ∴当x=4时,k=-4, ∴点D的坐标是(4,-4). ①如图(2),当AF为平行四边形的边时,AF平行且等于DE, ∵D(4,-4),∴DE=4. ∴F1(-6,0),F2(2,0), ②如图(3),当AF为平行四边形的对角线时,设F(n,0), ∵点A的坐标为(-2,0), 则平行四边形的对称中心的横坐标为:, ∴平行四边形的对称中心坐标为(,0), ∵D(4,-4), ∴E'的横坐标为:-4+=n-6, E'的纵坐标为:4, ∴E'的坐标为(n-6,4). 把E'(n-6,4)代入,得n2-16n+36=0. 解得.,, 综上所述F1(-6,0),F2(2,0),F3(8-2,0),F4(8+2,0).
复制答案
考点分析:
相关试题推荐
已知:如图,在半径为4的⊙O中,AB,CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=manfen5.com 满分网
(1)求证:AM•MB=EM•MC;
(2)求sin∠EOB的值;
(3)若P是直径AB延长线上的点,且BP=12,求证:直线PE是⊙O的切线.

manfen5.com 满分网 查看答案
东方专卖店专销某种品牌的钢笔,进价12元/支,售价20元/支.为了促销,专卖店决定凡是买10支以上的,每多买一支,售价就降低0.10元(例如,某人买20支计算器,于是每只降价0.10×(20-10)=1元,就可以按19元/支的价格购买),但是最低价为16元/支.
(1)求顾客一次至少买多少支,才能以最低价购买?
(2)写出当一次购买x支时(x>10),利润y(元)与购买量x(支)之间的函数关系式;
(3)有一天,一位顾客买了46支,另一位顾客买了50支,专实店发现卖了50支反而比卖46支赚的钱少,为了使每次卖的多赚钱也多,在其他促销条件不变的情况下,最低价16元/支至少要提高到多少,为什么?
查看答案
如图,在△AOB中,OA=OB=8,∠AOB=90°,矩形CDEF的顶点C、D、F分别在边AO、OB、AB上,若tanCDO=manfen5.com 满分网,则矩形CDEF面积的最大值s=   
manfen5.com 满分网 查看答案
已知:manfen5.com 满分网(n=1,2,3,…),记b1=2(1-a1),b2=2(1-a1)(1-a2),…,bn=2(1-a1)(1-a2)…(1-an),则通过计算推测出bn的表达式bn=    .(用含n的代数式表示) 查看答案
如图,A、B、C是⊙O上的三点,以BC为一边,作∠CBD=∠ABC,过BC上一点P,作PE∥AB交BD于点E.若∠AOC=60°,BE=3,则点P到弦AB的距离为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.