满分5 > 初中数学试题 >

我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收...

我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x万元,可获得利润P=manfen5.com 满分网(万元).当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x万元,可获利润manfen5.com 满分网(万元).
(1)若不进行开发,求5年所获利润的最大值是多少?
(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?
(3)根据(1)、(2),该方案是否具有实施价值?
(1)由可获得利润P=-(x-60)2+41(万元),即可知当x=60时,P最大,最大值为41,继而求得5年所获利润的最大值; (2)首先求得前两年的获利最大值,注意前两年:0≤x≤50,此时因为P随x的增大而增大,所以x=50时,P值最大;然后后三年:设每年获利y,设当地投资额为a,则外地投资额为100-a,即可得函数y=P+Q=[-(a-60)2+41]+[-a2+a+160],整理求解即可求得最大值,则可求得按规划实施,5年所获利润(扣除修路后)的最大值; (3)比较可知,该方案是具有极大的实施价值. 【解析】 (1)∵每投入x万元,可获得利润P=-(x-60)2+41(万元), ∴当x=60时,所获利润最大,最大值为41万元, ∴若不进行开发,5年所获利润的最大值是:41×5=205(万元); (2)前两年:0≤x≤50,此时因为P随x的增大而增大, 所以x=50时,P值最大,即这两年的获利最大为:2×[-(50-60)2+41]=80(万元), 后三年:设每年获利y,设当地投资额为a,则外地投资额为100-a, ∴Q=-[100-(100-a)]2+[100-(100-a)]+160=-a2+a+160, ∴y=P+Q=[-(a-60)2+41]+[-a2+a+160]=-a2+60a+165=-(a-30)2+1065, ∴当a=30时,y最大且为1065, ∴这三年的获利最大为1065×3=3195(万元), ∴5年所获利润(扣除修路后)的最大值是:80+3195-50×2=3175(万元). (3)有很大的实施价值. 规划后5年总利润为3175万元,不实施规划方案仅为205万元,故具有很大的实施价值.
复制答案
考点分析:
相关试题推荐
如图,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB、EA,延长BE交边AD于点F.
(1)求证:△ADE≌△BCE;(2)求∠AFB的度数.

manfen5.com 满分网 查看答案
某中学九年级(3)班50名学生参加平均每周上网时间的调查,由调查结果绘制了频数分布直方图,根据图中信息回答下列问题:
(1)求a的值;
(2)用列举法求以下事件的概率:从上网时间在6~10小时的5名学生中随机选取2人,其中至少有1人的上网时间在8~10小时.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图函数y1=k1x+b的图象与函数y2=manfen5.com 满分网(x>0)的图象交于A、B两点,与y轴交于C点.已知A点的坐标为(2,1),C点坐标为(0,3).
(1)求函数y1的表达式和B点坐标;
(2)观察图象,比较当x>0时,y1和y2的大小.
查看答案
先化简manfen5.com 满分网,然后从-2≤x≤2的范围内选取一个合适的整数作为x的值代入求值.
查看答案
如图,A、B、C是居民小区的三幢楼房,准备在小区修建一个超市P,要求到A、B、C三幢楼房的距离相等.(要求:不写已知、求作、作法和结论,保留作图痕迹,且必须用2B铅笔作图.)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.