满分5 > 初中数学试题 >

抛物线y=ax2+bx+c交x轴于A,B两点,交y轴于点C,对称轴为直线x=1,...

抛物线y=ax2+bx+c交x轴于A,B两点,交y轴于点C,对称轴为直线x=1,已知:A(-1,0),C(0,-3).
(1)求抛物线y=ax2+bx+c的解析式;
(2)求△AOC和△BOC的面积的比;
(3)在对称轴是否存在一个点P,使△PAC的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)根据抛物线的对称轴即可得出点B的坐标,然后将A、B、C三点坐标代入抛物线中即可求得二次函数的解析式. (2)由于两三角形等高,那么面积比就等于底边的比,据此求解即可. (3)本题的关键是确定P点的位置,根据轴对称图形的性质和两点间线段最短,可找出C点关于抛物线对称轴的对称点,然后连接此点和A,那么这条直线与抛物线对称轴的交点就是所求的P点.可先求出这条直线的解析式然后联立抛物线对称轴的解析式即可求得P点坐标. 【解析】 (1)∵A,B两点关于x=1对称, ∴B点坐标为(3,0), 根据题意得:, 解得a=1,b=-2,c=-3. ∴抛物线的解析式为y=x2-2x-3. (2)△AOC和△BOC的面积分别为S△AOC=|OA|•|OC|,S△BOC=|OB|•|OC|, 而|OA|=1,|OB|=3, ∴S△AOC:S△BOC=|OA|:|OB|=1:3. (3)存在一个点P.C点关于x=1对称点坐标C'为(2,-3), 令直线AC'的解析式为y=kx+b ∴, ∴k=-1,b=-1,即AC'的解析式为y=-x-1. 为x=1时,y=-2, ∴P点坐标为(1,-2).
复制答案
考点分析:
相关试题推荐
如图,在正方ABCD中,E是AB边上任一点,BG⊥CE,垂足为O,交AC于点F,交AD于点G.
(1)证明:BE=AG;
(2)E位于什么位置时,∠AEF=∠CEB?说明理由.

manfen5.com 满分网 查看答案
为了庆祝即将到来的2010年元旦,某校举行了书法比赛,赛后整理参赛同学的成绩,并制作成图表如下:
分数段频数频率
60≤x<70300.15
70≤x<80m0.45
80≤x<9060n
90≤x≤100200.1
请根据以上图表提供的信息,解答下列问题:
(1)表中的数m=______,n=______
(2)请在图中补全频数分布直方图;
(3)比赛成绩的中位数落在哪一个分数段;
(4)如果比赛成绩在80分以上(含80分)可获得奖励,那么获奖概率是多少?

manfen5.com 满分网 查看答案
如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(0,-1),
(1)写出A、B两点的坐标;
(2)画出△ABC关于y轴对称的△A1B1C1
(3)画出△ABC绕点C旋转180°后得到的△A2B2C2

manfen5.com 满分网 查看答案
如图,为测量某塔AB的高度,在离该塔底部20米处目测其顶A,仰角为60°,目高1.5米,试求该塔的高度(manfen5.com 满分网≈1.7).

manfen5.com 满分网 查看答案
(1)计算:|-3|-(manfen5.com 满分网-1+manfen5.com 满分网-2cos60°
(2)解方程组:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.