如图1,在平面直角坐标系中有一个Rt△OAC,点A(3,4),点C(3,0)将其沿直线AC翻折,翻折后图形为△BAC.动点P从点O出发,沿折线0⇒A⇒B的方向以每秒2个单位的速度向B运动,同时动点Q从点B出发,在线段BO上以每秒1个单位的速度向点O运动,当其中一个点到达终点时,另一点也随之停止运动.设运动的时间为t(秒).
(1)设△OPQ的面积为S,求S与t之间的函数关系式,并写出自变量t的取值范围;
(2)如图2,固定△OAC,将△ACB绕点C逆时针旋转,旋转后得到的三角形为△A′CB′设A′B′与AC交于点D当∠BCB′=∠CAB时,求线段CD的长;
(3)如图3,在△ACB绕点C逆时针旋转的过程中,若设A′C所在直线与OA所在直线的交点为E,是否存在点E使△ACE为等腰三角形?若存在,求出点E的坐标;若不存在,请说明理由.
查看答案