满分5 > 初中数学试题 >

如图,点A(m,m+1),B(m+3,m-1)都在反比例函数的图象上. (1)求...

如图,点A(m,m+1),B(m+3,m-1)都在反比例函数manfen5.com 满分网的图象上.
(1)求m,k的值;
(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.

manfen5.com 满分网
(1)求m、k两个未知字母,把A、B两点代入反比例函数即可; (2)按图中所给情况,M、N有可能都在坐标轴的正半轴,也有可能在坐标轴的负半轴,平移应找到对应点,看是如何平移得到.求出直线MN的函数表达式,需求出A,B两点的坐标. 【解析】 (1)由题意可知,m(m+1)=(m+3)(m-1),解得m=3,(2分) ∴A(3,4),B(6,2), ∴k=4×3=12;(3分) (2)存在两种情况,如图: ①当M点在x轴的正半轴上,N点在y轴的正半轴上时,设M1点坐标为(x1,0), N1点坐标为(0,y1), ∵四边形AN1M1B为平行四边形, ∴线段N1M1可看作由线段AB向左平移3个单位,再向下平移2个单位得到的, (也可看作向下平移2个单位,再向左平移3个单位得到的) 由(1)知A点坐标为(3,4),B点坐标为(6,2), ∴N1点坐标为(0,4-2),即N1(0,2), M1点坐标为(6-3,0),即M1(3,0),(4分) 设直线M1N1的函数表达式为y=k1x+2, 把x=3,y=0代入,解得, ∴直线M1N1的函数表达式为;(5分) ②当M点在x轴的负半轴上,N点在y轴的负半轴上时, 设M2点坐标为(x2,0),N2点坐标为(0,y2), ∵AB∥N1M1,AB∥M2N2,AB=N1M1,AB=M2N2, ∴N1M1∥M2N2,N1M1=M2N2, ∴四边形N1M2N2M1为平行四边形, ∴点M1、M2与线段N1、N2关于原点O成中心对称, ∴M2点坐标为(-3,0),N2点坐标为(0,-2),(6分) 设直线M2N2的函数表达式为y=k2x-2, 把x=-3,y=0代入,解得, ∴直线M2N2的函数表达式为. 所以,直线MN的函数表达式为或.(7分)
复制答案
考点分析:
相关试题推荐
今年5月12日,四川汶川发生了里氏8.0级大地震,给当地人民造成了巨大的损失.“一方有难,八方支援”,我市锦华中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:吴老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:
 班级 (1)班(2)班  (3)班
 金额(元) 2000  
信息一:这三个班的捐款总金额是7700元;
信息二:(2)班的捐款金额比(3)班的捐款金额多300元;
信息三:(1)班学生平均每人捐款的金额大于48元,小于51元.
请根据以上信息,帮助吴老师解决下列问题:
(1)求出(2)班与(3)班的捐款金额各是多少元;
(2)求出(1)班的学生人数.
查看答案
在一次数学活动中,黑板上画着如图所示的图形,活动前老师在准备的四张纸片上分别写有如下四个等式中的一个等式:
①AB=DC;②∠ABE=∠DCE;③AE=DE;④∠A=∠D
小明同学闭上眼睛从四张纸片中随机抽取一张,再从剩下的纸片中随机抽取另一张.请结合图形解答下列两个问题:
(1)当抽得①和②时,用①,②作为条件能判定△BEC是等腰三角形吗?说说你的理由;
(2)请你用树状图或表格表示抽取两张纸片上的等式所有可能出现的结果(用序号表示),并求以已经抽取的两张纸片上的等式为条件,使△BEC不能构成等腰三角形的概率.

manfen5.com 满分网 查看答案
(1)如图,在平行四边形ABCD中,∠B,∠D的平分线分别交对边于点E,F,交四边形的对角线AC于点G,H.求证:AH=CG.
manfen5.com 满分网
(2)如图,PA,PB是⊙O的切线,点A,B为切点,AC是⊙O的直径,∠ACB=70°.求∠P的度数.
manfen5.com 满分网
查看答案
(1)计算:先化简,再求值:(x+3)2+(x+2)(x-2)-2x2,其中manfen5.com 满分网
(2)解分式方程:解方程:manfen5.com 满分网
查看答案
manfen5.com 满分网如图,将矩形纸ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=3厘米,EF=4厘米,则边AD的长是    厘米. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.