将一张矩形纸片沿对角线剪开(如图1),得到两张三角形纸片△ABC、△DEF(如图2),量得他们的斜边长为6cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,且点A、C、E、F在同一条直线上,点C与点E重合.△ABC保持不动,OB为△ABC的中线.现对△DEF纸片进行如下操作时遇到了三个问题,请你帮助解决.
(1)将图3中的△DEF沿CA向右平移,直到两个三角形完全重合为止.设平移距离CE为x(即CE的长),求平移过程中,△DEF与△BOC重叠部分的面积S与x的函数关系式,以及自变量的取值范围;
(2)△DEF平移到E与O重合时(如图4),将△DEF绕点O顺时针旋转,旋转过程中△DEF的斜边EF交△ABC的BC边于G,求点C、O、G构成等腰三角形时,△OCG的面积;
(3)在(2)的旋转过程中,△DEF的边EF、DE分别交线段BC于点G、H(不与端点重合).求旋转角∠COG为多少度时,线段BH、GH、CG之间满足GH
2+BH
2=CG
2,请说明理由.
考点分析:
相关试题推荐
重庆潼南某一蔬菜种植基地种植的一种蔬菜,它的成本是每千克2元,售价是每千克3元,年销量为10(万千克).多吃绿色蔬菜有利于身体健康,因而绿色蔬菜倍受欢迎,十分畅销.为了获得更好的销量,保证人民的身体健康,基地准备拿出一定的资金作绿色开发,根据经验,若每年投入绿色开发的资金X(万元),该种蔬菜的年销量将是原年销量的m倍,它们的关系如下表:
x(万元) | | 1 | 2 | 3 | 4 | … |
m | 1 | 1.5 | 1.8 | 1.9 | 1.8 | … |
(1)试估计并验证m与x之间的函数类型并求该函数的表达式;
(2)若把利润看着是销售总额减去成本费和绿色开发的投入资金,试求年利润W(万元)与绿色开发投入的资金x(万元)的函数关系式;并求投入的资金不低于3万元,又不超过5万元时,x取多少时,年利润最大,求出最大利润.
(3)基地经调查:若增加种植人员的奖金,从而提高种植积极性,又可使销量增加,且增加的销量y(万千克)与增加种植人员的奖金z(万元)之间满足y=-z
2+4z,若基地将投入5万元用于绿色开发和提高种植人员的奖金,应怎样分配这笔资金才能使年利润达到17万元且绿色开发投入大于奖金?
.
查看答案
如图,AC是正方形ABCD的对角线,点O是AC的中点,点Q是AB上一点,连接CQ,DP⊥CQ于点E,交BC于点P,连接OP,OQ;
求证:
(1)△BCQ≌△CDP;
(2)OP=OQ.
查看答案
在“2010年重庆春季房交会”期间,某房地产开发企业推出A、B、C、D四种类型的住房共1000套进行展销,C型号住房销售的成交率为50%,其它型号住房的销售情况绘制在图1和图2两幅尚不完整的统计图中.
(1)参加展销的D型号住房套数为______套.
(2)请你将图2的统计图补充完整.
(3)若由2套A型号住房(用A
1,A
2表示),1套B型号住房(用B表示),1套C型号住房(用C表示)组成特价房源,并从中抽出2套住房,将这两套住房的全部销售款捐给青海玉树地震灾区,请用树状图或列表法求出2套住房均是A型号的概率.
查看答案
如图,已知一次函数y
1=kx+2的图象与y轴交于点C,与反比例函数
的图象相交于点A,点A的横坐标为1.过A作AD⊥y轴于点D,且tan∠ACD=1.
(1)求这两个函数的解析式及两图象的另一交点B的坐标;
(2)观察图象,直接写出使函数值y
1≥y
2的自变量x的取值范围.
查看答案
先化简分式:(a-
)÷
•
,再从-3、
-3、2、-2中选一个你喜欢的数作为a的值代入求值.
查看答案