满分5 > 初中数学试题 >

如图,平行四边形ABCD中,AB=5,BC=10,BC边上的高AM=4,E为BC...

如图,平行四边形ABCD中,AB=5,BC=10,BC边上的高AM=4,E为BC边上的一个动点(不与B、C重合).过E作直线AB的垂线,垂足为F.FE与DC的延长线相交于点G,连接DE,DF.
(1)求证:△BEF∽△CEG;
(2)当点E在线段BC上运动时,△BEF和△CEG的周长之间有什么关系?并说明你的理由;
(3)设BE=x,△DEF的面积为y,请你求出y和x之间的函数关系式,并求出当x为何值时,y有最大值,最大值是多少?

manfen5.com 满分网
(1)有AB∥DG,即可直接得到两个三角形相似. (2)两个三角形的周长之和是定值.利用勾股定理可求出BM=3,又因为Rt△BEF∽Rt△BAM,令BE=x,那么根据相似比,可用含x的代数式分别表示EF,BF,同样在△CEG中,令CE=y,可用含y的代数式表示CG,EG,又x+y=10,那么能求出两三角形的周长和是(x+y)=24. (3)利用相似比、勾股定理可得EF=x,CG=(10-x),那么利用三角形的面积公式,可得到y与x的关系式,再根据二次函数求最大值来求即可. (1)证明:因为四边形ABCD是平行四边形,所以AB∥DG, 所以∠B=∠GCE,∠G=∠BFE, 所以△BEF∽△CEG. (2)【解析】 △BEF与△CEG的周长之和为定值. 理由一:过点C作FG的平行线交直线AB于H, 因为GF⊥AB,所以四边形FHCG为矩形. 所以FH=CG,FG=CH, 因此,△BEF与△CEG的周长之和等于BC+CH+BH, ∵∠B=∠B,∠AMB=∠BHC=90° ∴△ABM∽△CBH, ∴ 由BC=10,AB=5,AM=4, 可得CH=8, ∴BH=6, 所以BC+CH+BH=24; 理由二:由AB=5,AM=4,可知: 在Rt△BEF与Rt△GCE中,有:EF=BE,BF=BE,GE=EC,GC=CE, 所以,△BEF的周长是BE,△ECG的周长是CE, 又BE+CE=10,因此△BEF与△CEG的周长之和是24. (3)【解析】 设BE=x,则EF=x,GC=(10-x), 所以y=EF•DG=•x[(10-x)+5]=-x2+x, 配方得:y=-(x-)2+. 所以,当x=时,y有最大值. 最大值为.
复制答案
考点分析:
相关试题推荐
如图(1),∠ABC=90°,O为射线BC上一点,OB=4,以点O为圆心,manfen5.com 满分网BO长为半径作⊙O交BC于点D、E.
(1)当射线BA绕点B按顺时针方向旋转多少度时与⊙O相切?请说明理由;
(2)若射线BA绕点B按顺时针方向旋转与⊙O相交于M、N两点(如图(2)),MN=manfen5.com 满分网,求manfen5.com 满分网的长.
manfen5.com 满分网
查看答案
某商场在促销期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场内消费满一定金额后,还可按如下方案获得相应金额的奖券:
消费金额a(元)200≤a<400400≤a<500500≤a<700700≤a<900
获奖券金额(元)3060100130
根据上述促销方法,顾客在该商场购物可以获得双重优惠.例如:购买标价为400元的商品,则消费金额为320元,获得的优惠额为:400×(1-80%)+30=110(元).
购买商品得到的优惠率=购买商品获得的优惠额÷商品的标价.
试问:(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?
(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得到manfen5.com 满分网的优惠率?
查看答案
初三学生小丽、小杰为了解本校初二学生每周上网的时间,各自在本校进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间,算得这些学生平均每周上网时间为2.5小时;小杰从全体320名初二学生名单中随机抽取了40名学生,调查了他们每周上网的时间,算得这些学生平均每周上网时间为1.2小时.小丽与小杰整理各自样本数据,如下表所示.
时间段(小时/周) 小丽抽样人数 小杰抽样人数 
 0~1 6 22
 1~2 10 10
 2~3 16 6
 3~4 8 2
(每组可含最低值,不含最高值)
请根据上述信息,回答下列问题:
(1)你认为哪位学生抽取的样本具有代表性?答:______
估计该校全体初二学生平均每周上网时间为______小时;
(2)根据具有代表性的样本,把上图中的频数分布直方图补画完整;
(3)在具有代表性的样本中,中位数所在的时间段是______小时/周;
(4)专家建议每周上网2小时以上(含2小时)的同学应适当减少上网的时间,根据具有代表性的样本估计,该校全体初二学生中有多少名同学应适当减少上网的时间?

manfen5.com 满分网 查看答案
连云港市花果山风景区为了提高某景点的安全性,决定将到达该景点的步行台阶进行改善,把倾角由45°减至30°,已知原台阶坡面AB的长为10m(BC所在地面为水平面).
(1)改善后的台阶坡面会加长多少?
(2)改善后的台阶多占多长一段水平地面?(结果精确到0.1m,参考数据:manfen5.com 满分网≈1.41,manfen5.com 满分网≈1.73)
manfen5.com 满分网
查看答案
已知:抛物线C1manfen5.com 满分网与C2:y=x2+2mx+n具有下列特征:①都与x轴有交点;②与y轴相交于同一点.
(1)求m,n的值;
(2)试写出x为何值时,y1>y2
(3)试描述抛物线C1通过怎样的变换得到抛物线C2
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.