满分5 > 初中数学试题 >

迎接大运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉...

迎接大运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.
(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.
(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?
(1)摆放50个园艺造型所需的甲种和乙种花卉应<现有的盆数,可由此列出不等式求出符合题意的搭配方案来; (2)根据两种造型单价的成本费可分别计算出各种可行方案所需的成本,然后进行比较;也可由两种造型的单价知单价成本较低的造型较多而单价成本较高的造型较少,所需的总成本就低. 【解析】 (1)设搭配A种造型x个,则B种造型为(50-x)个,依题意得 解这个不等式组得, ∴31≤x≤33 ∵x是整数, ∴x可取31,32,33 ∴可设计三种搭配方案 ①A种园艺造型31个B种园艺造型19个 ②A种园艺造型32个B种园艺造型18个 ③A种园艺造型33个B种园艺造型17个. (2)方法一: 由于B种造型的造价成本高于A种造型成本.所以B种造型越少,成本越低,故应选择方案③,成本最低,最低成本为 33×800+17×960=42720(元) 方法二: 方案①需成本31×800+19×960=43040(元) 方案②需成本32×800+18×960=42880(元) 方案③需成本33×800+17×960=42720(元) ∴应选择方案③,成本最低,最低成本为42720元.
复制答案
考点分析:
相关试题推荐
三人相互传球,由甲开始发球,并作为第一次传球.
(1)用列表或画树状图的方法求经过3次传球后,球仍回到甲手中的概率是多少?
(2)由(1)进一步探索:经过4次传球后,球仍回到甲手中的不同传球的方法共有多少种?
(3)就传球次数n与球分别回到甲、乙、丙手中的可能性大小,提出你的猜想(写出结论即可).
查看答案
如图甲,有一个塔高40米,位于一座山上,在其下方有一个坡度i=1:1的斜坡,某一时刻,身高1.60米的同学小明测得自己的影子(在平地上)为0.8米,那么,此时这个塔在斜坡上的影子长为多少米?(可借用图形乙)

manfen5.com 满分网 查看答案
在如图所示的方格纸中,每个小正方形的边长都为1,△ABC与△A1B1C1构成的图形是中心对称图形.
(1)画出此中心对称图形的对称中心O;
(2)画出将△A1B1C1沿直线DE方向向上平移5格得到的△A2B2C2
(3)要使△A2B2C2与△CC1C2重合,则△A2B2C2绕点C2顺时针方向旋转,至少要旋转多少度?(不要求证明)

manfen5.com 满分网 查看答案
已知二次函数y=ax2+bx+c(a,b,c是常数),x与y的部分对应值如下表:
x-2-1123
y-16-62-6
(1)请写出这个二次函数的对称轴方程;
(2)判断点A(manfen5.com 满分网,1)是否在该二次函数的图象上,并说明理由.
查看答案
manfen5.com 满分网如图,阴影部分是由5个小正方形组成的一个直角图形,请用二种方法分别在下图方格内添涂黑二个小正方形,使它们成为轴对称图形.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.