满分5 > 初中数学试题 >

如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,...

如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.
(1)求点A的坐标(用m表示);
(2)求抛物线的解析式;
(3)设点Q为抛物线上点P至点B之间的一动点,连接PQ并延长交BC于点E,连接BQ并延长交AC于点F,试证明:FC(AC+EC)为定值.

manfen5.com 满分网
(1)AO=AC-OC=m-3,用线段的长度表示点A的坐标; (2)∵△ABC是等腰直角三角形,∴△AOD也是等腰直角三角形,∴OD=OA,∴D(0,m-3),又P(1,0)为抛物线顶点,可设顶点式,求解析式; (3)设Q(x,x2-2x+1),过Q点分别作x轴,y轴的垂线,运用相似比求出FC、EC的长,而AC=m,代入即可. (1)【解析】 由B(3,m)可知OC=3,BC=m,又△ABC为等腰直角三角形, ∴AC=BC=m,OA=m-3, ∴点A的坐标是(3-m,0). (2)【解析】 ∵∠ODA=∠OAD=45°∴OD=OA=m-3,则点D的坐标是(0,m-3). 又抛物线顶点为P(1,0),且过点B、D, 所以可设抛物线的解析式为:y=a(x-1)2, 得: 解得 ∴抛物线的解析式为y=x2-2x+1; (3)证明:过点Q作QM⊥AC于点M,过点Q作QN⊥BC于点N, 设点Q的坐标是(x,x2-2x+1), 则QM=CN=(x-1)2,MC=QN=3-x. ∵QM∥CE ∴△PQM∽△PEC ∴ 即,得EC=2(x-1) ∵QN∥FC ∴△BQN∽△BFC ∴ 即,得 又∵AC=4 ∴FC(AC+EC)=[4+2(x-1)]=(2x+2)=×2×(x+1)=8 即FC(AC+EC)为定值8.
复制答案
考点分析:
相关试题推荐
在△ABC中,∠BAC与∠ABC的角平分线AE、BE相交于点E,延长AE交△ABC的外接圆于D点,连接BD、CD、CE,且∠BDA=60°
①求证:△BDE是等边三角形;
②若∠BDC=120°,猜想BDCE是怎样的四边形,并证明你的猜想;
③在②的条件下当CE=4时,求四边形ABDC的面积.

manfen5.com 满分网 查看答案
为把产品打入国际市场,某企业决定从下面两个投资方案中选择一个进行投资生产.方案一:生产甲产品,每件产品成本为a万美元(a为常数,且3<a<8),每件产品销售价为10万美元,每年最多可生产200件;方案二:生产乙产品,每件产品成本为8万美元,每件产品销售价为18万美元,每年最多可生产120件.另外,年销售x件乙产品时需上交0.05x2万美元的特别关税.在不考虑其它因素的情况下:
(1)分别写出该企业两个投资方案的年利润y1、y2与相应生产件数x(x为正整数)之间的函数关系式,并指出自变量的取值范围;
(2)分别求出这两个投资方案的最大年利润;
(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?
查看答案
如图,在△ABC中,∠ACB=90°,BC的垂直平分线交BC于D,交AB于点E,F在DE上,并且AF=CE.
(1)求证:四边形ACEF是平行四边形;
(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请证明你的结论;
(3)四边形ACEF有可能是矩形吗?为什么?

manfen5.com 满分网 查看答案
如图,一次函数y=kx+b的图象与反比例函数manfen5.com 满分网的图象交于A(-6,2)、B(4,n)两点,直线AB分别交x轴、y轴于D、C两点.
(1)求上述反比例函数和一次函数的解析式;
(2)若AD=tCD,求t.

manfen5.com 满分网 查看答案
如图,一艘渔船位于海洋观测站P的北偏东60°方向,渔船在A处与海洋观测站P的距离为60海里,它沿正南方向航行一段时间后,到达位于海洋观测站P的南偏东45°方向上的B处.求此时渔船所在的B处与海洋观测站P的距离(结果保留根号).

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.