满分5 > 初中数学试题 >

如图,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC∥DE交BD于点...

如图,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC∥DE交BD于点H,DO及延长线分别交AC、BC于点G、F.
(1)求证:DF垂直平分AC;
(2)求证:FC=CE;
(3)若弦AD=5cm,AC=8cm,求⊙O的半径.

manfen5.com 满分网
(1)由DE是⊙O的切线,且DF过圆心O,可得DF⊥DE,又由AC∥DE,则DF⊥AC,进而可知DF垂直平分AC; (2)可先证△AGD≌△CGF,四边形ACED是平行四边形,即可证明FC=CE; (3)连接AO可先求得AG=4cm,在Rt△AGD中,由勾股定理得GD=3cm;设圆的半径为r,则AO=r,OG=r-3,在Rt△AOG中,由勾股定理可求得r=. (1)证明:∵DE是⊙O的切线,且DF过圆心O, ∴DF是⊙O的直径所在的直线, ∴DF⊥DE, 又∵AC∥DE, ∴DF⊥AC, ∴G为AC的中点,即DF平分AC,则DF垂直平分AC;(2分) (2)证明:由(1)知:AG=GC, 又∵AD∥BC, ∴∠DAG=∠FCG; 又∵∠AGD=∠CGF, ∴△AGD≌△CGF(ASA),(4分) ∴AD=FC; ∵AD∥BC且AC∥DE, ∴四边形ACED是平行四边形, ∴AD=CE, ∴FC=CE;(5分) (3)【解析】 连接AO, ∵AG=GC,AC=8cm, ∴AG=4cm; 在Rt△AGD中,由勾股定理得GD2=AD2-AG2=52-42=9, ∴GD=3;(6分) 设圆的半径为r,则AO=r,OG=r-3, 在Rt△AOG中,由勾股定理得AO2=OG2+AG2, 有:r2=(r-3)2+42, 解得r=,(8分) ∴⊙O的半径为cm.
复制答案
考点分析:
相关试题推荐
某校部分住校生,放学后到学校锅炉房打水,每人接水2升,他们先同时打开两个放水笼头,后来因故障关闭一个放水笼头.假设前后两人接水间隔时间忽略不计,且不发生泼洒,锅炉内的余水量y(升)与接水时间x(分)的函数图象如图.
请结合图象,回答下列问题:
(1)根据图中信息,请你写出一个结论;
(2)问前15位同学接水结束共需要几分钟?
(3)小敏说:“今天我们寝室的8位同学去锅炉房连续接完水恰好用了3分钟.”你说可能吗?请说明理由.

manfen5.com 满分网 查看答案
在矩形ABCD中,AB=1,AD=manfen5.com 满分网,AF平分∠DAB,过点C作CE⊥BE于E,延长AF、EC交于点H,那么下列结论:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.其中正确结论的序号是    (多填或错填的得0分,少填的酌情给分)
manfen5.com 满分网 查看答案
如图,DB为半圆的直径,A为BD延长线上一点,AC切半圆于点E,BC⊥AC于点C,交半圆于点F.已知BD=2,设AD=x,CF=y,则y关于x的函数解析式是   
manfen5.com 满分网 查看答案
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b<0;③4a-2b+c<0.正确序号为   
manfen5.com 满分网 查看答案
已知如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,点P在BC上移动,则当PA+PD取最小值时,△APD中边AP上的高为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.