满分5 > 初中数学试题 >

如图,已知抛物线y=x2-ax+a2-4a-4与x轴相交于点A和点B,与y轴相交...

如图,已知抛物线y=x2-ax+a2-4a-4与x轴相交于点A和点B,与y轴相交于点D(0,8),直线DC平行于x轴,交抛物线于另一点C,动点P以每秒2个单位长度的速度从C点出发,沿C→D运动,同时,点Q以每秒1个单位长度的速度从点A出发,沿A→B运动,连接PQ、CB,设点P运动的时间为t秒.
(1)求a的值;
(2)当四边形ODPQ为矩形时,求这个矩形的面积;
(3)当四边形PQBC的面积等于14时,求t的值.
(4)当t为何值时,△PBQ是等腰三角形?(直接写出答案)

manfen5.com 满分网
(1)把点D(0,8)代入抛物线y=x2-ax+a2-4a-4解方程即可解答; (2)利用(1)中求得的抛物线,求得点A、B、C、D四点坐标,再利用矩形的判定与性质解得即可; (3)利用梯形的面积计算方法解决问题; (4)只考虑PQ=PB,其他不符合实际情况,即可找到问题的答案. 【解析】 (1)把点(0,8)代入抛物线y=x2-ax+a2-4a-4得, a2-4a-4=8, 解得:a1=6,a2=-2(不合题意,舍去), 因此a的值为6; (2)由(1)可得抛物线的解析式为y=x2-6x+8, 当y=0时,x2-6x+8=0, 解得:x1=2,x2=4, ∴A点坐标为(2,0),B点坐标为(4,0), 当y=8时,x2-6x+8=8, 解得:x=0或x=6, ∴D点的坐标为(0,8),C点坐标为(6,8), DP=6-2t,OQ=2+t, 当四边形OQPD为矩形时,DP=OQ, 2+t=6-2t,t=,OQ=2+=, S=8×=, 即矩形OQPD的面积为; (3)四边形PQBC的面积为(BQ+PC)×8,当此四边形的面积为14时, (2-t+2t)×8=14, 解得t=(秒), 当t=时,四边形PQBC的面积为14; (4)过点P作PE⊥AB于E,连接PB, 当QE=BE时,△PBQ是等腰三角形, ∵CP=2t, ∴DP=6-2t, ∴BE=OB-PD=4-(6-2t)=2t-2, ∵OQ=2+t, ∴QE=PD-OQ=6-2t-(2+t)=4-3t, ∴4-3t=2t-2, 解得:t=, ∴当t=时,△PBQ是等腰三角形.
复制答案
考点分析:
相关试题推荐
如图所示,矩形ABCD中,点E在CB的延长线上,使CE=AC,连接AE,点F是AE的中点,连接BF、DF,求证:BF⊥DF.

manfen5.com 满分网 查看答案
如图,一艘渔船位于海洋观测站P的北偏东60°方向,渔船在A处与海洋观测站P的距离为60海里,它沿正南方向航行一段时间后,到达位于海洋观测站P的南偏东45°方向上的B处.求此时渔船所在的B处与海洋观测站P的距离(结果保留根号).

manfen5.com 满分网 查看答案
已知⊙O的直径AB、CD互相垂直,弦AE交CD于F,若⊙O的半径为R,
求证:AE•AF=2R2

manfen5.com 满分网 查看答案
在金融危机的影响下,国家采取扩大内需的政策,基建投资成为拉动内需最强有力的引擎,金强公司中标一项工程,在甲、乙两地施工,其中甲地需推土机30台,乙地需推土机26台,公司在A、B两地分别库存推土机32台和24台,现从A地运一台到甲、乙两地的费用分别是400元和300元.从B地运一台到甲、乙两地的费用分别为200元和500元,设从A地运往甲地x台推土机,运这批推土机的总费用为y元.
(1)求y与x的函数关系式;
(2)公司应设计怎样的方案,能使运送这批推土机的总费用最少?
查看答案
某校为了了解九年级学生的体能情况,抽调了一部分学生进行一分钟跳绳测试,将测试成绩整理后作出如下统计图,甲同学计算出前两组的频率和是0.12,乙同学计算出跳绳次数不少于100次的同学占96%,丙同学计算出从左至右第二、三、四组的频数比为4:17:15,结合统计图回答下列问题:
(1)这次共抽调了多少人?
(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?
(3)如果这次测试成绩的中位数是120次,那么这次测试中,成绩为120次的学生至少有多少人?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.