满分5 > 初中数学试题 >

如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(6,0),(...

如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(6,0),(6,8).动点M、N分别从O、B同时出发,以每秒1个单位的速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点N作NP⊥BC,交AC于P,连接MP.已知动点运动了x秒.
(1)P点的坐标为多少;(用含x的代数式表示)
(2)试求△MPA面积的最大值,并求此时x的值;
(3)请你探索:当x为何值时,△MPA是一个等腰三角形?你发现了几种情况?写出你的研究成果.

manfen5.com 满分网
(1)P点的横坐标与N点的横坐标相同,求出CN的长即可得出P点的横坐标,然后通过求直线AC的函数解析式来得出P点的纵坐标,由此可求出P点的坐标; (2)可通过求△MPA的面积和x的函数关系式来得出△MPA的面积最大值及对应的x的值. △MPA中,MA=OA-OM,而MA边上的高就是P点的纵坐标,由此可根据三角形的面积计算公式求出S与x的函数关系式,进而根据函数的性质得出S的最大值和对应的x的值; (3)可分三种情况进行讨论: ①MP=AP时,延长NP交x轴于Q,则有PQ⊥OA,那么此时有AQ=BN=MA,由此可求出x的值. ②当MP=AM时,可根据MP、AM的不同表达式得出一个关于x的方程即可求出x的值. ③当MP=MA时,可在直角三角形PMQ中,根据勾股定理求出x的值. 综上所述可得出符合条件的x的值. 【解析】 (1)由题意可知C(0,8),又A(6,0), 所以直线AC解析式为:y=-x+8, 因为P点的横坐标与N点的横坐标相同为6-x,代入直线AC中得y=, 所以P点坐标为(6-x,x); (2)设△MPA的面积为S,在△MPA中,MA=6-x,MA边上的高为x, 其中,0≤x<6, ∴S=(6-x)×x=(-x2+6x)=-(x-3)2+6, ∴S的最大值为6,此时x=3; (3)延长NP交x轴于Q,则有PQ⊥OA ①若MP=PA, ∵PQ⊥MA, ∴MQ=QA=x, ∴3x=6, ∴x=2; ②若MP=MA,则MQ=6-2x,PQ=x,PM=MA=6-x, 在Rt△PMQ中, ∵PM2=MQ2+PQ2, ∴(6-x)2=(6-2x)2+(x)2, ∴x=; ③若PA=AM, ∵PA=x,AM=6-x, ∴x=6-x, ∴x=, 综上所述,x=2,或x=,或x=.
复制答案
考点分析:
相关试题推荐
如图,已知正比例函数和反比例函数的图象都经过点A(3,3).
(1)求正比例函数和反比例函数的解析式;
(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;
(3)第(2)问中的一次函数的图象与x轴、y轴分别交于C、D,求过A、B、D三点的三角形的面积.

manfen5.com 满分网 查看答案
由于受甲型H1N1流感(起初叫猪流感)的影响,4月初某地猪肉价格大幅度下调,下调后每斤猪肉价格是原价格的manfen5.com 满分网,原来用60元买到的猪肉下调后可多买2斤.4月中旬,经专家研究证实,猪流感不是由猪传染,很快更名为甲型H1N1流感.因此,猪肉价格4月底开始回升,经过两个月后,猪肉价格上调为每斤14.4元.
(1)求4月初猪肉价格下调后每斤多少元?
(2)求5,6月份猪肉价格的月平均增长率.
查看答案
一个不透明的布袋里装有4个大小、质地均相同的乒乓球,每个球上面分别标有1,2,3,4,小林先从布袋中随机抽取一个乒乓球(不放回去),再从剩下的3个球中随机抽取第二个乒乓球.
(1)请你列出所有可能的结果;
(2)求两次取得乒乓球的数字之积为奇数的概率.
查看答案
(1)如图1,在▱ABCD中,点E是AD的中点,连接CE并延长,交BA的延长线于点F.求证:FA=AB.
(2)如图2,在⊙O中,∠ACB=∠BDC=60°,AC=2manfen5.com 满分网cm,①求∠BAC的度数; ②求⊙O的周长.

manfen5.com 满分网 查看答案
(1)化简:(a+1)(a-1)-a(a-1).(2)解方程组manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.