满分5 > 初中数学试题 >

某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处...

某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:
(1)若设每件降价x元、每星期售出商品的利润为y元,请写山y与x的函数关系式,并求出自变量x的取值范围;
(2)当降价多少元时,每星期的利润最大?最大利润是多少?
(1)根据题意,卖出了(60-x)(300+20x)元,原进价共40(300+20x)元,则y=(60-x)(300+20x)-40(300+20x). (2)根据x=-时,y有最大值即可求得最大利润. 【解析】 (1)y=(60-x)(300+20x)-40(300+20x), 即y=-20x2+100x+6000. 因为降价要确保盈利,所以40<60-x≤60(或40<60-x<60也可). 解得0≤x<20(或0<x<20); (2)当时, y有最大值, 即当降价2.5元时,利润最大且为6125元.
复制答案
考点分析:
相关试题推荐
已知抛物线y=-x2+bx+c的部分图象如图所示.
(1)求b、c的值;
(2)求y的最大值;
(3)写出当y>0时,x的取值范围.

manfen5.com 满分网 查看答案
如图,小明欲利用测角仪测量树的高度.已知他离树的水平距离BC为10m,测角仪的高度CD为1.5m,测得树顶A的仰角为33°.求树的高度AB.
(参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)

manfen5.com 满分网 查看答案
如图所示,⊙O的内接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延长线于D点,OC交AB于E点.
(1)求∠D的度数;
(2)求证:AC2=AD•CE.

manfen5.com 满分网 查看答案
已知:如图,△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.
(1)求证:△ABD∽△CBA;
(2)若DE∥AB交AC于点E,请再写出另一个与△ABD相似的三角形,并直接写出DE的长.

manfen5.com 满分网 查看答案
解方程:x2-2x-1=0
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.