如图,在直角坐标系中,以点A(
,0)为圆心,以
为半径的圆与x轴交于B、C两点,与y轴交于D、E两点.
(1)求D点坐标.
(2)若B、C、D三点在抛物线y=ax
2+bx+c上,求这个抛物线的解析式.
(3)若⊙A的切线交x轴正半轴于点M,交y轴负半轴于点N,切点为P,∠OMN=30°,试判断直线MN是否经过所求抛物线的顶点?说明理由.
考点分析:
相关试题推荐
某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.
(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.
(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.
(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?
查看答案
如图△ABC中,过点A分别作∠ABC、∠ACB的外角的平分线的垂线AD,AE,D,E为垂足.
求证:(1)ED∥BC;
(2)
.
查看答案
如图所示,在平面直角坐标系内点A和点C的坐标分别为(4,8),(0,5),过点A作AB⊥x轴于点B,过OB上的动点D作直线y=kx+b平行于AC,与AB相交于点E,连接CD,过点E作EF∥CD交AC于点F.
(1)求经过A、C两点的直线的解析式;
(2)当点D在OB上移动时,能否使四边形CDEF为矩形?若能,求出此时k,b的值;若不能,请说明理由.
查看答案
在梯形ABCD中,AD∥BC,AB=DC=AD=6,∠ABC=60°,点E,F分别在线段AD,DC上(点E与点A,D不重合),且∠BEF=120°,设AE=x,DF=y.
(1)求y与x的函数表达式;
(2)当x为何值时,y有最大值,最大值是多少?
查看答案
某公司现有甲、乙两种品牌的打印机,其中甲品牌有A,B两种型号,乙品牌有C,D,E三种型号.朝阳中学计划从甲、乙两种品牌中各选购一种型号的打印机.
(1)利用树状图或列表法写出所有选购方案;
(2)若各种型号的打印机被选购的可能性相同,那么C型号打印机被选购的概率是多少?
(3)各种型号打印机的价格如下表:
| 甲品牌 | 乙品牌 |
型号 | A | B | C | D | E |
价格(元) | 2000 | 1700 | 1300 | 1200 | 1000 |
朝阳中学购买了两种品牌的打印机共30台,其中乙品牌只选购了E型号,共用去资金5万元,问E型号的打印机购买了多少台?
查看答案