满分5 > 初中数学试题 >

已知点M,N的坐标分别为(0,1),(0,-1),点P是抛物线y=x2上的一个动...

已知点M,N的坐标分别为(0,1),(0,-1),点P是抛物线y=manfen5.com 满分网x2上的一个动点.
(1)求证:以点P为圆心,PM为半径的圆与直线y=-1的相切;
(2)设直线PM与抛物线y=manfen5.com 满分网x2的另一个交点为点Q,连接NP,NQ,求证:∠PNM=∠QNM.
manfen5.com 满分网
(1)可先根据抛物线的解析式设出P点的坐标,那么可得出PM的长的表达式,P点到y=-1的长就是P点的纵坐标与-1的差的绝对值,那么可判断得出的表示PM和P到y=-1的距离的两个式子是否相等,如果相等,则y=-1是圆P的切线. (2)可通过构建相似三角形来求解,过Q,P作QR⊥直线y=-1,PH⊥直线y=-1,垂足为R,H,那么QR∥MN∥PH,根据平行线分线段成比例定理可得出QM:MP=RN:NH.(1)中已得出了PM=PH,那么同理可得出QM=QR,那么比例关系式可写成QR:PH=RN:NH,而这两组对应成比例的线段的夹角又都是直角,因此可求出∠QNR=∠PNH,根据等角的余角相等,可得出∠QNM=∠PNM. 【解析】 (1)设点P的坐标为(x,x2),则 PM==x2+1; 又因为点P到直线y=-1的距离为,x2-(-1)=x2+1 所以,以点P为圆心,PM为半径的圆与直线y=-1相切. (2)如图,分别过点P,Q作直线y=-1的垂线,垂足分别为H,R. 由(1)知,PH=PM,同理可得,QM=QR. 因为PH,MN,QR都垂直于直线y=-1, 所以,PH∥MN∥QR, 于是=, 所以, 因此,Rt△PHN∽Rt△QRN. 于是∠HNP=∠RNQ,从而∠PNM=∠QNM.
复制答案
考点分析:
相关试题推荐
如图,在△ABC中,AC=BC,CD是AB边上的高线,且有2CD=3AB,又E,F为CD的三等分点,
求证:∠ACB+∠AEB+∠AFB=180°.

manfen5.com 满分网 查看答案
把几个数用大括号围起来,中间用逗号断开,如:{1,2,3},{2,7,8,19},我们称之为集合,其中的数称其为集合的元素.如果一个集合满足:当实数a是集合的元素时,实数8-a也必是这个集合的元素,这样的集合我们称为好的集合.
(1)请你判断集合{1,2},{1,4,7}是不是好的集合;
(2)请你写出满足条件的两个好的集合的例子.
查看答案
田忌赛马
齐王和他的大臣田忌均有上、中、下马各-匹,每场比赛三匹马各出场一次,共赛三次,以胜的次数多者为赢.已知田忌的马较齐王的马略有逊色,即:田忌的上马不敌齐王的上马,但胜过齐王的中马;田忌的中马不敌齐王的中马,但胜过齐王的下马;田忌的下马不敌齐王的下马.田忌在按图1的方法屡赛屡败后,接受了孙膑的建议,用图2的方法,结果田忌两胜一负,赢了比赛.假如在不知道齐王出马顺序的情况下:
manfen5.com 满分网manfen5.com 满分网
(1)请按如图的形式,列出所有其他可能的情况;
(2)田忌能赢得比赛的概率是______
查看答案
如果有2007名学生排成一列,按1、2、3、4、5、4、3、2、1、2、3、4、5、4、3、2、1…的规律报数,那么第2007名学生所报的数是    查看答案
已知方程x2+(a-3)x+3=0在实数范围内恒有解,并且恰有一个解大于1小于2,a的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.