满分5 > 初中数学试题 >

如图,抛物线y=x2+bx-2与x轴交于A,B两点,与y轴交于C点,且A(-1,...

如图,抛物线y=manfen5.com 满分网x2+bx-2与x轴交于A,B两点,与y轴交于C点,且A(-1,0).
(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,证明你的结论;
(3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.

manfen5.com 满分网
(1)把A点的坐标代入抛物线解析式,求b的值,即可得出抛物线的解析式,根据顶点坐标公式,即可求出顶点坐标; (2)根据直角三角形的性质,推出AC2=OA2+OC2=5,BC2=OC2+OB2=20,即AC2+BC2=25=AB2,即可确定△ABC是直角三角形; (3)作出点C关于x轴的对称点C′,则C′(0,2),OC'=2.连接C'D交x轴于点M,根据轴对称性及两点之间线段最短可知,MC+MD的值最小.首先确定最小值,然后根据三角形相似的有关性质定理,求m的值 【解析】 (1)∵点A(-1,0)在抛物线y=x2+bx-2上, ∴×(-1 )2+b×(-1)-2=0,解得b= ∴抛物线的解析式为y=x2-x-2. y=x2-x-2 =( x2-3x-4 ) =(x-)2-, ∴顶点D的坐标为 (,-). (2)当x=0时y=-2,∴C(0,-2),OC=2. 当y=0时,x2-x-2=0,∴x1=-1,x2=4,∴B (4,0) ∴OA=1,OB=4,AB=5. ∵AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20, ∴AC2+BC2=AB2.∴△ABC是直角三角形. (3)作出点C关于x轴的对称点C′,则C′(0,2),OC′=2, 连接C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,MC+MD的值最小. 解法一:设抛物线的对称轴交x轴于点E. ∵ED∥y轴,∴∠OC′M=∠EDM,∠C′OM=∠DEM ∴△C′OM∽△DEM. ∴ ∴, ∴m=. 解法二:设直线C′D的解析式为y=kx+n, 则, 解得:. ∴. ∴当y=0时,,. ∴.
复制答案
考点分析:
相关试题推荐
已知一次函数y=x+2与反比例函数y=manfen5.com 满分网,其中一次函数y=x+2的图象经过点P(k,5).
(1)试确定反比例函数的表达式;
(2)若点Q是上述一次函数与反比例函数图象在第三象限的交点,求点Q的坐标.
查看答案
有一个不透明口袋,装有分别标有数字1,2,3,4的4个小球(小球除数字不同外,其余都相同),另有3张背面完全一样、正面分别写有数字1,2,3的卡片.小敏从口袋中任意摸出一个小球,小颖从这3张背面朝上的卡片中任意摸出一张,然后计算小球和卡片上的两个数的积.
(1)请你用列表或画树状图的方法,求摸出的这两个数的积为6的概率;
(2)小敏和小颖做游戏,她们约定:若这两个数的积为奇数,小敏赢;否则,小颖赢.你认为该游戏公平吗?为什么?如果不公平,请你修改游戏规则,使游戏公平.
查看答案
吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康.我国从2011年1月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织同学们在某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下两个统计图:
manfen5.com 满分网
根据统计图解答:
(1)同学们一共随机调查了多少人?
(2)请你把扇形统计图和条形统计图补充完整;
(3)如果该社区有1000人,请估计该地区大约有多少人支持“警示戒烟”这种方式.
查看答案
如图,△ABC中,以BC为直径的圆交AB于点D,∠ACD=∠ABC.
(1)求证:CA是圆的切线;
(2)若点E是BC上一点,已知BE=6,tan∠ABC=manfen5.com 满分网,tan∠AEC=manfen5.com 满分网,求圆的直径.

manfen5.com 满分网 查看答案
如图,四边形ABCD是等腰梯形,AD∥BC,AB=DC,且BE=CF.
(1)求证:AF=DE.
(2)判断△OAD的形状,并证明你的结论.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.