满分5 > 初中数学试题 >

如图,一次函数y1=k1x+2与反比例函数的图象交于点A(4,m)和B(-8,-...

如图,一次函数y1=k1x+2与反比例函数manfen5.com 满分网的图象交于点A(4,m)和B(-8,-2),与y轴交于点C.
(1)k1=______,k2=______
(2)根据函数图象可知,当y1>y2时,x的取值范围是______
(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP与线段AD交于点E,当S四边形ODAC:S△ODE=3:1时,求点P的坐标.

manfen5.com 满分网
(1)本题须把B点的坐标分别代入一次函数y1=k1x+2与反比例函数的解析式即可求出K2、k1的值. (2)本题须先求出一次函数y1=k1x+2与反比例函数的图象的交点坐标,即可求出当y1>y2时,x的取值范围. (3)本题须先求出四边形OADC的面积,从而求出DE的长,然后得出点E的坐标,最后求出直线OP的解析式即可得出点P的坐标. 【解析】 (1)∵一次函数y1=k1x+2与反比例函数的图象交于点A(4,m)和B(-8,-2), ∴K2=(-8)×(-2)=16, -2=-8k1+2 ∴k1= (2)∵一次函数y1=k1x+2与反比例函数的图象交于点A(4,4)和B(-8,-2), ∴当y1>y2时,x的取值范围是 -8<x<0或x>4; (3)由(1)知,. ∴m=4,点C的坐标是(0,2)点A的坐标是(4,4). ∴CO=2,AD=OD=4. ∴. ∵S梯形ODAC:S△ODE=3:1,∴S△ODE=S梯形ODAC=×12=4, 即 OD•DE=4, ∴DE=2. ∴点E的坐标为(4,2). 又点E在直线OP上, ∴直线OP的解析式是. ∴直线OP与 的图象在第一象限内的交点P的坐标为( ). 故答案为:,16,-8<x<0或x>4
复制答案
考点分析:
相关试题推荐
如图,在6×8网格图中,每个小正方形边长均为1,点0和△ABC的顶点均为小正方形的顶点.
(1)以O为位似中心,在网络图中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比为 1:2;
(2)连接(1)中的AA′,求四边形AA′C′C的周长.(结果保留根号)

manfen5.com 满分网 查看答案
(1)计算:manfen5.com 满分网
(2)解方程:manfen5.com 满分网
查看答案
如图,三个半圆依次相外切,它们的圆心都在x轴上,并与直线y=manfen5.com 满分网x相切.设三个半圆的半径依次为r1、r2、r3,则当r1=1时,r3=   
manfen5.com 满分网 查看答案
如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6cm,DE=2cm,则BC=   
manfen5.com 满分网 查看答案
如图,AD和AC分别是⊙O的直径和弦,且∠CAD=30°,OB⊥AD交AC于点B,若OB=5,则BC等于   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.