满分5 > 初中数学试题 >

如图1,在Rt△ABC中,∠C=90°,BC=8厘米,点D在AC上,CD=3厘米...

如图1,在Rt△ABC中,∠C=90°,BC=8厘米,点D在AC上,CD=3厘米.点P、Q分别由A、C两点同时出发,点P沿AC方向向点C匀速移动,速度为每秒k厘米,行完AC全程用时8秒;点Q沿CB方向向点B匀速移动,速度为每秒1厘米.设运动的时间为x秒(0<x<8),△DCQ的面积为y1平方厘米,△PCQ的面积为y2平方厘米.
(1)求y1与x的函数关系,并在图2中画出y1的图象;
(2)如图2,y2的图象是抛物线的一部分,其顶点坐标是(4,12),求点P的速度及AC的长;
(3)在图2中,点G是x轴正半轴上一点0<OG<6,过G作EF垂直于x轴,分别交y1、y2的图象于点E、F.
①说出线段EF的长在图1中所表示的实际意义;
②当0<x<6时,求线段EF长的最大值.

manfen5.com 满分网
(1)已知了CD=3,根据Q点的速度可以用时间x表示出CQ的长,可根据三角形的面积计算公式得出y1,x的函数关系式; (2)可先求出y2的函数式,然后根据其顶点坐标来确定k的取值.已知了P点走完AC用时8s,因此AC=8k,而AP=kx,CQ=x,那么可根据三角形的面积公式列出关于y2,x的函数关系式,进而可根据顶点坐标求出k的值; (3)EF其实就是y2-y1,也就是三角形PCQ和CDQ的面积差即三角形PDQ的面积.得出EF的函数关系式后,根据自变量的取值以及函数的性质即可求出EF的最大值. 【解析】 (1)∵S△DCQ=•CQ•CD,CD=3,CQ=x, ∴y1=x(0<x<8).图象如图所示; (2)S△PCQ=•CQ•CP,CP=8k-xk,CQ=x, ∴y2=×(8k-kx)•x=-kx2+4kx. ∵抛物线顶点坐标是(4,12), ∴-k•42+4k•4=12. 解得k=. 则点P的速度每秒厘米,AC=12厘米; (3)①观察图象,知线段的长EF=y2-y1,表示△PCQ与△DCQ的面积差(或△PDQ面积). ②由(2)得y2=-x2+6x. ∴EF=-x2+6x-x=-x2+x=-(x2-6x+9)+=-(x-3)2+, ∵二次项系数小于0, ∴在0<x<6范围, 当x=3时,EF=最大.
复制答案
考点分析:
相关试题推荐
如图,BC是半圆⊙O的直径,D是弧AC的中点,四边形ABCD的对角线AC、BD交于点E.
(1)求证:AC•BC=2BD•CD,
(2)若AE=3,CD=2manfen5.com 满分网,求弦AB和直径BC的长.

manfen5.com 满分网 查看答案
团体购买某“素质拓展训练营”的门票,票价如表(a为正整数):
团体购票人数1~50  51~100  100以上
每人门票价   a元 (a-3)元 (a-6)元
(1)某中学高一(1)、高一(2)班同学准备参加“素质拓展训练营”活动,其中高一(1)班人数不超过50,高一(2)的人数超过50但不超过80.当a=48时,若两班分别购票,两班总计应付门票费4914元;若合在一起作为一个团体购票,总计支付门票费4452元.问这两个班级各有多少人?
(2)某校学生会现有资金4429元用于购票,打算组织本校初三年级团员参加该项活动.为了让更多的人能参加活动,学生会统一组织购票,购票资金恰好全部用完,且参加人数超过了100人,问共有多少人参加了这一活动并求出此时a的值.
查看答案
如图是某单位职工的年龄(取整数)的频数分布直方图,已知图中从左到右五个小组的频数之比为8:14:9:x:5,且第三小组的频数为45,频率为0.225.回答下列问题:
(1)该单位职工总人数是多少?
(2)年龄在43.5~49.5段的职工人数占职工总人数的百分比是多少?
(3)该单位职工年龄的中位数落在五个小组中的哪个小组内?请说明理由.

manfen5.com 满分网 查看答案
现有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC的中点.将纸片沿直线AE折叠,点B落在四边形AECD内,记为点B′.求线段B′C的长.

manfen5.com 满分网 查看答案
当n=1,2,…,2008时,所有二次函数y=n(n+1)x2-(2n+1)x+1图象在x轴上所截得线段的长度之和为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.