如图1,在平面直角坐标系中有一个Rt△OAC,点A(3,4),点C(3,0)将其沿直线AC翻折,翻折后图形为△BAC.动点P从点O出发,沿折线0⇒A⇒B的方向以每秒2个单位的速度向B运动,同时动点Q从点B出发,在线段BO上以每秒1个单位的速度向点O运动,当其中一个点到达终点时,另一点也随之停止运动.设运动的时间为t(秒).
(1)设△OPQ的面积为S,求S与t之间的函数关系式,并写出自变量t的取值范围;
(2)如图2,固定△OAC,将△ACB绕点C逆时针旋转,旋转后得到的三角形为△A′CB′设A′B′与AC交于点D当∠BCB′=∠CAB时,求线段CD的长;
(3)如图3,在△ACB绕点C逆时针旋转的过程中,若设A′C所在直线与OA所在直线的交点为E,是否存在点E使△ACE为等腰三角形?若存在,求出点E的坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
在“春季经贸洽谈会”上,我市某服装厂接到生产一批出口服装的订单,要求必须在12天(含12天)内保质保量完成,且当天加工的服装当天立即空运走.为了加快进度,车间采取工人轮流休息,机器满负荷运转的生产方式,生产效率得到了提高.这样每天生产的服装数量y(套)与时间x(元)的关系如下表:
时间x(天) | 1 | 2 | 3 | 4 | … |
每天产量y(套) | 22 | 24 | 26 | 28 | … |
由于机器损耗等原因,当每天生产的服装数达到一定量后,平均每套服装的成本会随着服装产量的增加而增大,这样平均每套服装的成本z(元)与生产时间x(天)的关系如图所示.
(1)判断每天生产的服装的数量y(套)与生产时间x(元)之间是我们学过的哪种函数关系?并验证.
(2)已知这批外贸服装的订购价格为每套1570元,设车间每天的利润为w(元).求w(元)与x(天)之间的函数关系式,并求出哪一天该生产车间获得最高利润,最高利润是多少元?
(3)从第6天起,该厂决定该车间每销售一套服装就捐a元给山区的留守儿童作为建图书室的基金,但必须保证每天扣除捐款后的利润随时间的增大而增大.求a的最大值,此时留守儿童共得多少元基金?
查看答案
如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.
(1)求证:DP平分∠ADC;
(2)若∠AEB=75°,AB=2,求△DFP的面积.
查看答案
某校初三(20)班全班50名同学积极参与向贫困山区的留守儿童捐款献爱心活动,团支部利用两种统计图对本班捐款情况进行统计:
(1)已知该班40%的同学为团员;请求全班捐款的金额的中位数,团员同学捐款的平均数,并补全两个统计图.
(2)现要在捐款50元、60元的同学中随机各抽一名代表参加“下乡与留守儿童手拉手”活动,并且知道捐款50元的同学中有两名女团员捐款60元的同学中有一名女团员,请用树状图或列表法求出两名代表刚好为一男一女的概率.
查看答案
如图,已知直线AB与x轴、y轴交于A、B两点与反比例函数的图象交于C点和D点,若OA=3,点C的横坐标为-3,tan∠BAO=
.
(1)求反比例函数与一次函数的解析式;
(2)求△COD的面积;
(3)若一次函数的值大于反比例函数的值,求x的取值范围.
查看答案
先化简,再求值:
,其中x=2+
.
查看答案