满分5 > 初中数学试题 >

关于x的二次函数y=-x2+(k2-4)x+2k-2以y轴为对称轴,且与y轴的交...

关于x的二次函数y=-x2+(k2-4)x+2k-2以y轴为对称轴,且与y轴的交点在x轴上方.
(1)求此抛物线的解析式,并在下面建立直角坐标系画出函数的草图;
(2)设A是y轴右侧抛物线上的一个动点,过点A作AB垂直于x轴于点B,再过点A作x轴的平行线交抛物线于点D,过点D作DC垂直于x轴于点C,得到矩形ABCD.设矩形ABCD的周长为l,点A的横坐标为x,试求l关于x的函数关系式;
(3)当点A在y轴右侧的抛物线上运动时,矩形ABCD能否成为正方形?若能,请求出此时正方形的周长;若不能,请说明理由.
(1)因为二次函数y=-x2+(k2-4)x+2k-2以y轴为对称轴,所以k2-4=0,即可解出k的值,求出抛物线解析式,并利用描点法画出图象; (2)求出抛物线与x轴的交点坐标,分矩形在x轴上方和矩形在x轴下方两种情况,根据矩形周长公式解答; (3)假设能构成正方形,根据正方形边长相等,列等式解出x的值,若x>0,则能构成正方形,若x<0,则不能构成正方形. 【解析】 (1)据题意得:k2-4=0, ∴k=±2. 当k=2时,2k-2=2>0. 当k=-2时,2k-2=-6<0(2分) 又∵抛物线与y轴的交点在x轴上方, ∴k=2. ∴抛物线的解析式为:y=-x2+2.(1分) (2)【解析】 令-x2+2=0,得x=±. 当0<x<时,A1D1=2x,A1B1=-x2+2, ∴l=2(A1B1+A1D1)=-2x2+4x+4(2分) 当x>时,A2D2=2x. A2B2=-(-x2+2)=x2-2. ∴l=2(A2D2+A2B2)=2x2+4x-4(2分) (3)当0<x<时,令A1B1=A1D1,得x2+2x-2=0. 解得x=-1-(舍去),或x=-1+. 将x=-1+代入l=-2x2+4x+4, 得l=8-8(3分) 当x>时,令A2B2=A2D2得:x2-2x-2=0, 解得x=1-(舍去),或x=1+. 代入l=2x2+4x-4,得L=8+8(3分) 综上,矩形ABCD能成为正方形, 且当x=-1时正方形的周长是8-8, 当x=+1时,周长为8+8(1分).
复制答案
考点分析:
相关试题推荐
小明家想要在自己家的阳台上铺地砖,经测量后设计了如图的图纸,黑色区域为宽度相等的一条“7”形的健身用鹅卵石小路,空白部分为地砖铺设区域.要使铺地砖的面积为14平方米.
(1)小路的宽度应为多少?
(2)小明家决定在阳台上铺设规格为80×80的地砖(即边长为80厘米的正方形),为了美观起见,工人师傅常采用下面的方法来估算至少需要的地砖数量:尽量保证整块地砖的铺设,边上有多余空隙的,空隙宽度小于地砖边长一半的,可将一块割成两块来铺设空隙处,大于一半的只能铺设一处一边长80厘米的矩形空隙,请你帮助工人师傅估算一下小明家至少需要多少块地砖?

manfen5.com 满分网 查看答案
如图,在矩形ABCD中,AE平分∠DAB交DC于点E,连接BE,过E作EF⊥BE交AD于E.
(1)求证:∠DEF=∠CBE;
(2)请找出图中与EB相等的线段(不另添加辅助线和字母),并说明理由.

manfen5.com 满分网 查看答案
兰州市城市规划期间,欲拆除黄河岸边的一根电线杆AB(如图),已知距电线杆AB水平距离14米处是河岸,即BD=14米,该河岸的坡面CD的坡角∠CDF的正切值为2,岸高CF为2米,在坡顶C处测得杆顶A的仰角为30°,D、E之间是宽2米的人行道,请你通过计算说明在拆除电线杆AB时,为确保安全,是否将此人行道封上?(在地面上以点B为圆心,以AB长为半径的圆形区域为危险区域)

manfen5.com 满分网 查看答案
manfen5.com 满分网为了进一步了解八年级学生的身体素质情况,体育老师对八年级(1)班50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图.如下所示:
组别次数x频数(人数)
第1组80≤x<1006
第2组100≤x<1208
第3组120≤x<140a
第4组140≤x<16018
第5组160≤x<1806
请结合图表完成下列问题:
(1)表中的a=______
(2)请把频数分布直方图补充完整;
(3)这个样本数据的中位数落在第______组;
(4)若八年级学生一分钟跳绳次数(x)达标要求是:x<120不合格;120≤x<140为合格;140≤x<160为良;x≥160为优.根据以上信息,请你给学校或八年级同学提一条合理化建议:______
查看答案
如图,Rt△ABC中,∠C=90°,AC=4,BC=3,以△ABC的一边为边画等腰三角形,使它的第三个顶点在△ABC的其他边上.请在图①,图②,图③中分别画出一个符合条件的等腰三角形,且三个图形中的等腰三角形各不相同,并在图中标明所画等腰三角形的腰长.(不要求尺规作图)
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.