满分5 > 初中数学试题 >

已知:如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D....

已知:如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A、D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,AB=6,BD=2manfen5.com 满分网,求线段BD、BE与劣弧DE所围成的图形面积.(结果保留根号和π)

manfen5.com 满分网
(1)根据题意得:O点应该是AD垂直平分线与AB的交点;由∠BAC的角平分线AD交BC边于D,与圆的性质可证得AC∥OD,又由∠C=90°,则问题得证; (2)设⊙O的半径为r.则在Rt△OBD中,利用勾股定理列出关于r的方程,通过解方程即可求得r的值;然后根据扇形面积公式和三角形面积的计算可以求得“线段BD、BE与劣弧DE所围成的图形面积为:S△ODB-S扇形ODE=2-π”. 【解析】 (1)如图:连接OD, ∵OA=OD, ∴∠OAD=∠ADO, ∵∠BAC的角平分线AD交BC边于D, ∴∠CAD=∠OAD, ∴∠CAD=∠ADO, ∴AC∥OD, ∵∠C=90°, ∴∠ODB=90°, ∴OD⊥BC, 即直线BC与⊙O的切线, ∴直线BC与⊙O的位置关系为相切; (2)设⊙O的半径为r,则OB=6-r,又BD=2, 在Rt△OBD中, OD2+BD2=OB2, 即r2+(2)2=(6-r)2, 解得r=2,OB=6-r=4, ∴∠DOB=60°, ∴S扇形ODE==π, S△ODB=OD•BD=×2×2=2, ∴线段BD、BE与劣弧DE所围成的图形面积为:S△ODB-S扇形ODE=2-π.
复制答案
考点分析:
相关试题推荐
绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.
(1)王灿如何安排甲、乙两种货车可一次性地运到销售地有几种方案?
(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?
查看答案
如图,P是矩形ABCD下方一点,将△PCD绕P点顺时针旋转60°后恰好D点与A点重合,得到△PEA,连接EB,问△ABE是什么特殊三角形?请说明理由.

manfen5.com 满分网 查看答案
从3名男生和2名女生中随机抽取2014年南京青奧会志愿者.求下列事件的概率:
(1)抽取1名,恰好是女生;
(2)抽取2名,恰好是1名男生和1名女生.
查看答案
某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长AB=6m,∠ABC=45°,后考虑到安全因素,将楼梯脚B移到CB延长线上点D处,使∠ADC=30°(如图所示).
(1)求调整后楼梯AD的长;
(2)求BD的长.
(结果保留根号)

manfen5.com 满分网 查看答案
如图,已知二次函数y=-manfen5.com 满分网+bx+c的图象经过A(2,0)、B(0,-6)两点.
(1)求这个二次函数的解析式;
(2)设该二次函数的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.