满分5 > 初中数学试题 >

已知二次函数y=ax2+bx+c的图象经过点A(3,0),B(2,-3),C(0...

已知二次函数y=ax2+bx+c的图象经过点A(3,0),B(2,-3),C(0,-3).
(1)求此函数的解析式及图象的对称轴;
(2)点P从B点出发以每秒0.1个单位的速度沿线段BC向C点运动,点Q从O点出发以相同的速度沿线段OA向A点运动,其中一个动点到达端点时,另一个也随之停止运动.设运动时间为t秒.
①当t为何值时,四边形ABPQ为等腰梯形;
②设PQ与对称轴的交点为M,过M点作x轴的平行线交AB于点N,设四边形ANPQ的面积为S,求面积S关于时间t的函数解析式,并指出t的取值范围;当t为何值时,S有最大值或最小值.

manfen5.com 满分网
(1)知道二次函数的解析式经过三点,把三点坐标代入就能求得函数解析式,由解析式写出对称轴. (2)①过点B,点P作BD⊥OA,PE⊥OA,垂足分别为D,E,要使四边形ABPQ为等腰梯形,只需PQ=AB,算出时间t. ②设对称轴与BC,x轴的交点分别为F,G,根据题意求出PF=QG,MFP≌△MGQ,由S=S四边形ABPQ-S△BPN列出函数关系式,求出最小值. 【解析】 (1)∵二次函数y=ax2+bx+c的图象经过点C(0,-3), ∴c=-3, 将点A(3,0),B(2,-3)代入y=ax2+bx+c 得 解得:a=1,b=-2. ∴y=x2-2x-3, 配方得:y=(x-1)2-4, 所以对称轴直线为:x=1; (2)①由题意可知:BP=OQ=0.1t, ∵点B,点C的纵坐标相等, ∴BC∥OA, 过点B,点P作BD⊥OA,PE⊥OA,垂足分别为D,E, 要使四边形ABPQ为等腰梯形,只需PQ=AB, ∵BD⊥OA,PE⊥OA,垂足分别为D,E, ∴△ABD和△QPE为直角三角形, 当PQ=AB时,又∵BD=PE, ∴Rt△ABD≌Rt△QPE(HL), ∴QE=AD=1. ∵ED=BP=0.1t,DO=BC=2, ∴EO=2-0.1t, 又∵QE=OE-OQ=(2-0.1t)-0.1t=2-0.2t, ∴2-0.2t=1, 解得t=5. 即t=5秒时,四边形ABPQ为等腰梯形. ②设对称轴与BC,x轴的交点分别为F,G. ∵对称轴x=1是线段BC的垂直平分线, ∴BF=CF=OG=1. 又∵BP=OQ, ∴PF=QG. 又∵∠PMF=∠QMG,∠MFP=∠MGQ=90°, ∴△MFP≌△MGQ(AAS), ∴MF=MG, ∴点M为FG的中点, ∴S=S四边形ABPQ-S△BPN=S四边形ABFG-S△BPN. 由S四边形ABFG==. , ∴S=. 又∵BC=2,OA=3, ∴点P运动到点C时停止运动,需要20秒. ∴0<t≤20. ∴当t=20秒时,面积S有最小值3.
复制答案
考点分析:
相关试题推荐
今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如下表:
周数x1234
价格y(元/kg)22.22.42.6
进入5月,由于本地蔬菜的上市,此种蔬菜的平均销售价格y(元/千克)从5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y与周数x的变化情况满足二次函数y=-manfen5.com 满分网x2+bx+c.
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y与x的函数关系式,并求出5月份y与x的函数关系式;
(2)若4月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=manfen5.com 满分网x+1.2,5月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=manfen5.com 满分网x+2.试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?
(3)若5月份的第2周共销售100吨此种蔬菜.从5月份的第3周起,由于受暴雨的影响,此种蔬菜的可供销量将在第2周销量的基础上每周减少a%,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的销售价格比第2周仅上涨0.8a%.若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a的整数值.
(参考数据:372=1369,382=1444,392=1521,402=1600,412=1681)
查看答案
如图,望远镜调节好后,摆放在水平地面上;观测者用望远镜观测物体时,眼睛(在A点)到水平地面的距离AD=91cm,沿AB方向观测物体的仰角α=33°,望远镜前端(B点)与眼睛(A点)之间的距离AB=153cm;
求:(1)点B到水平地面的距离BC的长;(精确到0.1cm)
(2)AB在地面的正投影长.
(参考数据:sin33°=0.54,cos33°=0.84,tan33°=0.65)

manfen5.com 满分网 查看答案
学生小明、小华到某电脑销售公司参加社会实践活动,了解到2010年该公司经销的甲、己两种品牌电脑在第一季度三个月(即一、二、三月份)的销售数量情况.小明用条形统计图表示甲品牌电脑在第一季度每个月的销售量的分布情况,见图①;小华用扇形统计图表示乙品牌电脑每个月的销售量与该品牌电脑在第一季度的销售总量的比例分布情况,见图②.
根据上述信息,回答下列问题:
(1)这三个月中,甲品牌电脑在哪个月的销售量最大?______月份;
(2)已知该公司这三个月中销售乙品牌电脑的总数量比销售甲品牌电脑的总数量多50台,求乙品牌电脑在二月份共销售了多少台?

manfen5.com 满分网 查看答案
如图,已知AB是⊙O的直径,点C在⊙O上,∠A=30°,点E在AC上,∠AOE=60°且OE=1.
(1)求劣弧线AC的长.
(2)若∠ABD=120°,BD=1,求证:CD是⊙O的切线.

manfen5.com 满分网 查看答案
现有一本故事书,姐妹俩商定通过摸球游戏定输赢(赢的一方先看),游戏规则是:用4个完全相同的小球,分别表上1、2、3、4后放进一个布袋内,先由姐姐从布袋中任意摸出一个小球,记下小球的标号后放回并摇匀,再由妹妹任意摸出一个小球,若两人摸出的小球标号之积为偶数,则姐姐赢,两人摸出的小球标号之积为奇数,则妹妹赢.这个游戏规则对双方公平吗?请利用树状图或列表法说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.