如图,某广场一灯柱AB被一钢缆CD固定,CD与地面成40°夹角,且CB=5米.
(1)求钢缆CD的长度;(精确到0.1米)
(2)若AD=2米,灯的顶端E距离A处1.6米,且∠EAB=120°,则灯的顶端E距离地面多少米?
(参考数据:tan40°=0.84,sin40°=0.64,cos40°=
)
考点分析:
相关试题推荐
定义:已知反比例函数
与
,如果存在函数
(k
1k
2>0)则称函数
为这两个函数的中和函数.
(1)试写出一对函数,使得它的中和函数为
,并且其中一个函数满足:当x<0时,y随x的增大而增大.
(2)函数
和
的中和函数
的图象和函数y=2x的图象相交于两点,试求当
的函数值大于y=2x的函数值时x的取值范围.
查看答案
如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为2,求图中阴影部分的面积.
查看答案
在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共10只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:
摸球的次数 | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次数 | 58 | 96 | 116 | 295 | 484 | 601 |
摸到白球的频率 | 0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
(1)请估计:当n很大时,摸到白球的频率将会接近______;(保留二个有效数字)
(2)试估算口袋中黑、白两种颜色的球各有多少只?
(3)请画树状图或列表计算:从中一次摸两只球,这两只球颜色不同的概率是多少?
查看答案
如图,现有边长为1,a (其中a>1)的一张矩形纸片,现要将它剪裁出三个小矩形 (大小可以不同,但不能有剩余),使每个矩形都与原矩形相似,请画出两种不同和裁剪方案的示意图,并写出相应的a的值(不必写过程).
a=______
查看答案