满分5 > 初中数学试题 >

已知抛物线y=ax2+bx+c与y轴交于点A(0,3),与x轴分别交于B(1,0...

已知抛物线y=ax2+bx+c与y轴交于点A(0,3),与x轴分别交于B(1,0)、C(5,0)两点.
(1)求此抛物线的解析式;
(2)若点D为线段OA的一个三等分点,求直线DC的解析式;
(3)若一个动点P自OA的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点A′求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长.
(1)由于A、B、C三点的坐标已知,代入函数解析式中利用待定系数法就可以确定函数的解析式; (2)若点D为线段OA的一个三等分点,那么根据已知条件可以确定D的坐标为(0,1)或,(0,2),而C的坐标已知,利用待定系数法就可以确定直线CD的解析式; (3)如图,由题意,可得M(0,),点M关于x轴的对称点为M′(0,-),点A关于抛物线对称轴x=3的对称点为A'(6,3),连接A'M',根据轴对称性及两点间线段最短可知,A'M'的长就是所求点P运动的最短总路径的长,根据待定系数法可求出直线A'M'的解析式为y=x-,从而求出E、F两点的坐标,再根据勾股定理可以求出A'M'=,也就求出了最短总路径的长. 【解析】 (1)根据题意,c=3, 所以 解得 所以抛物线解析式为y=x2-x+3. (2)依题意可得OA的三等分点分别为(0,1),(0,2). 设直线CD的解析式为y=kx+b. 当点D的坐标为(0,1)时,直线CD的解析式为y=-x+1;(3分) 当点D的坐标为(0,2)时,直线CD的解析式为y=-x+2.(4分) (3)如图,由题意,可得M(0,). 点M关于x轴的对称 点为M′(0,-), 点A关于抛物线对称轴x=3的对称点为A'(6,3). 连接A'M'. 根据轴对称性及两点间线段最短可知,A'M'的长就是所求点P运动的最短总路径的长.(5分) 所以A'M'与x轴的交点为所求E点,与直线x=3的交点为所求F点. 可求得直线A'M'的解析式为y=x-. 可得E点坐标为(2,0),F点坐标为(3,).(7分) 由勾股定理可求出. 所以点P运动的最短总路径(ME+EF+FA)的长为.(8分)
复制答案
考点分析:
相关试题推荐
如图,在方格纸(每个小方格都是边长为1个单位长度的正方形)中,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形.如图中的△ABC称为格点△ABC.
(1)如果A,D两点的坐标分别是(1,1)和(0,-1),请你在方格纸中建立平面直角坐标系,并直接写出点B,点C的坐标;
(2)把“格点△ABC图案”向右平移10个单位长度,再向上平移5个单位长度,以点P(11,4)为旋转中心旋转180°,请你在方格纸中画出变换后的图案.

manfen5.com 满分网 查看答案
在一次数学活动课上,老师带领学生去测一条南北流向河流的河宽,如图所示,某学生在河东岸点A处观测河对岸水边点C,测得C在A北偏西30°的方向上,沿河岸向北前行30米到达B处,测得C在B北偏西60°的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.(答案带根号)

manfen5.com 满分网 查看答案
如图,函数manfen5.com 满分网(x>0,k是常数)的图象经过A(1,4),B(a,b),其中a>1,过点B作y轴的垂线,垂足为C,连接AB,AC.
(1)求k的值;
(2)若△ABC的面积为4,求点B的坐标.

manfen5.com 满分网 查看答案
小英和小强做一个“配色”的游戏.下图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B转出了红色,则红色和蓝色在一起配成紫色,这种情况下小英获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小强获胜;在其它情况下,则小英、小强不分胜负.
(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;
(2)此游戏的规则,对双方都公平吗?如果公平,请说明理由;如果不公平,请修改游戏规则,使得游戏对双方都公平.
manfen5.com 满分网
查看答案
我市某县为创建省文明卫生城市,计划将城市道路两旁的人行道进行改造,经调查可知,若该工程由甲工程队单独来做恰好在规定时间内完成;若该工程由乙工程队单独完成,则需要的天数是规定时间的2倍,若甲、乙两工程队合作6天后,余下的工程由甲工程队单独来做还需3天完成.
(1)问该县要求完成这项工程规定的时间是多少天?
(2)已知甲工程队做一天需付给工资5万元,乙工程队做一天需付给工资3万元.现该工程由甲、乙两个工程队合作完成,该县准备了工程工资款65万元.请问该县准备的工程工资款是否够用?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.