如图,以A为顶点的抛物线与y轴交于点B、已知A、B两点的坐标分别为(3,0)、(0,4).
(1)求抛物线的解析式;
(2)设M(m,n)是抛物线上的一点(m、n为正整数),且它位于对称轴的右侧.若以M、B、O、A为顶点的四边形四条边的长度是四个连续的正整数,求点M的坐标;
(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点P,PA
2+PB
2+PM
2>28是否总成立?请说明理由.
考点分析:
相关试题推荐
刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B=90°,∠A=30°,BC=6cm;图②中,∠D=90°,∠E=45°,DE=4cm.图③是刘卫同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).
(1)在△DEF沿AC方向移动的过程中,刘卫同学发现:F、C两点间的距离逐渐______.(填“不变”、“变大”或“变小”)
(2)刘卫同学经过进一步地研究,编制了如下问题:
问题①:当△DEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行?
问题②:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形?
问题③:在△DEF的移动过程中,是否存在某个位置,使得∠FCD=15°?如果存在,求出AD的长度;如果不存在,请说明理由.
请你分别完成上述三个问题的解答过程.
查看答案
国泰玩具厂工人的工作时间:每月25天,每天8小时.待遇:按件计酬,多劳多得,每月另加福利工资100元,按月结算.该厂生产A、B两种产品,工人每生产一件A种产品,可得报酬0.75元,每生产一件B种产品,可得报酬1.40元.下表记录了工人小李的工作情况:根据上表提供的信息,请回答下列问题:
(1)小李每生产一件A种产品、每生产一件B种产品,分别需要多少分钟?
(2)如果生产各种产品的数目没有限制,那么小李每月的工资数目在什么范围之内?
生产A种产品件数(件) | 生产B种产品件数(件) | 总时间(分) |
1 | 1 | 35 |
3 | 2 | 85 |
查看答案
已知反比例函数y=
的图象经过点A(-
,1).
(1)试确定此反比例函数的解析式;
(2)点O是坐标原点,将线段OA绕O点顺时针旋转30°得到线段OB.判断点B是否在此反比例函数的图象上,并说明理由;
(3)已知点P(m,
m+6)也在此反比例函数的图象上(其中m<0),过P点作x轴的垂线,交x轴于点M.若线段PM上存在一点Q,使得△OQM的面积是
,设Q点的纵坐标为n,求n
2-2
n+9的值.
查看答案
右图为手的示意图,在各个手指间标记字母A、B、C、D.请你按图中箭头所指方向(即A⇒B⇒C⇒D⇒C⇒B⇒A⇒B⇒C⇒…的方式)从A开始数连续的正整数1,2,3,4…,当数到12时,对应的字母是
;当字母C第201次出现时,恰好数到的数是
;当字母C第2n+1次出现时(n为正整数),恰好数到的数是
(用含n的代数式表示).
查看答案
如图所示,点A
1,A
2,A
3在x轴上,且OA
1=A
1A
2=A
2A
3,分别过点A
1,A
2,A
3作y轴的平行线,与反比例函数y=
(x>0)的图象分别交于点B
1,B
2,B
3,分别过点B
1,B
2,B
3作x轴的平行线,分别于y轴交于点C
1,C
2,C
3,连接OB
1,OB
2,OB
3,那么图中阴影部分的面积之和为
.
查看答案