满分5 > 初中数学试题 >

如图,在平面直角坐标系中,直角梯形ABCO的边OC落在x轴的正半轴上,且AB∥O...

如图,在平面直角坐标系中,直角梯形ABCO的边OC落在x轴的正半轴上,且AB∥OC,BC⊥OC,AB=4,BC=6,OC=8.正方形ODEF的两边分别落在坐标轴上,且它的面积等于直角梯形ABCO面积.将正方形ODEF沿x轴的正半轴平行移动,设它与直角梯形ABCO的重叠部分面积为S.
(1)分析与计算:求正方形ODEF的边长;
(2)操作与求【解析】

①正方形ODEF平行移动过程中,通过操作、观察,试判断S(S>0)的变化情况是______
A、逐渐增大B、逐渐减少C、先增大后减少D、先减少后增大
②当正方形ODEF顶点O移动到点C时,求S的值;
(3)探究与归纳:
设正方形ODEF的顶点O向右移动的距离为x,求重叠部分面积S与x的函数关系式.manfen5.com 满分网
(1)根据梯形及正方形的面积公式和它们的面积相等,可求出正方形的边长; (2)由图形的移动可知,从OF出发,重叠部分面积逐渐增大,当OF和BC重合时面积最大,继续移动时,面积将减小;求重叠部分面积时,可将其转化为S梯形AMDG+S矩形AGCB. (3)依据题意将图形平移,由于移动的距离不同,重叠部分为三角形、五边形和矩形,①利用三角形的面积公式列等式;②根据梯形面积公式列等式;③④利用分割法将五边形化为三角形和梯形解答;⑤根据矩形面积公式解答. 【解析】 (1)∵SODEF=SABCO=(4+8)×6=36,(2分) 设正方形的边长为x, ∴x2=36,x=6或x=-6(舍去).(2分) (2)由图形的移动可知,从OF出发,重叠部分面积逐渐增大, 当OF和BC重合时面积最大,继续移动时,面积将减小. 故选C.(2分) 过点A作AG∥BC交x轴于G,所以AE=DG=EB-AB=6-4=2.当正方形ODEF顶点O移动到点C时,OD=OC-CD=8-6=2; 于是重叠部分的面积是S=S梯形AMDG+S矩形AGCB=(3+6)×2+6×4=33.(3分) (3)①当0≤x<4时,重叠部分为三角形,如图①. 可得△OMO′∽△OAN, ∴,MO′=. ∴S=×x•x=x2.(1分) ②当4≤x<6时,重叠部分为直角梯形,如图②. S=(x-4+x)×6×=6x-12.(1分) ③当6≤x<8时,重叠部分为五边形,如图③. 可得,点A坐标为(4,6),故OA的解析式为:y=x, ∴MD=(x-6),AF=x-4. S=×(x-4+x)×6-(x-6)(x-6) =-x2+15x-39.(1分) ④当8≤x<10时,重叠部分为五边形,如图④. S=SAFO'DM-SBFO′C=-x2+15x-39-(x-8)×6 =-x2+9x+9.(1分) ⑤当10≤x≤14时,重叠部分为矩形,如图⑤.S=[6-(x-8)]×6=-6x+84.(1分) (用其它方法求解正确,相应给分).
复制答案
考点分析:
相关试题推荐
已知抛物线y=mx2-(m-5)x-5(m>0)与x轴交于两点A(x1,0)、B(x2,0)(x1<x2),与y轴交于点C,且AB=6.
(1)求抛物线和直线BC的解析式;
(2)在给定的直角坐标系中,画出抛物线和直线BC;
(3)若⊙P过A、B、C三点,求⊙P的半径;
(4)抛物线上是否存在点M,过点M作MN⊥x轴于点N,使△MBN被直线BC分成面积比为1:3的两部分?若存在,请求出点M的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据下表提供的信息,解答以下问题:
土特产品种ABC
每辆汽车运载量(吨)865
每吨土特产获利(百元)121610
(1)设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,求y与x之间的函数关系式.
(2)如果装运每种土特产的车辆都不少于3辆,那么车辆的安排方案有几种并写出每种安排方案.
(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.
查看答案
如图,水平面上放置一圆锥,在圆锥顶端斜靠着一根木棒(木棒的厚度可忽略不计),
manfen5.com 满分网
小明为了探究这个问题,将此情景画在了草稿纸上(如图2正视图),运动过程:木棒顶端从A点开始沿圆锥的母线下滑,速度为θ1(木棒下滑为匀速),已知木棒与水平地面的夹角为θ,θ随木棒的下滑而不断减小,θ的最大值为30°,若木棒长为manfen5.com 满分网,问:当木棒顶端重A滑到B这个过程中,木棒末端的速度v′2是多少?
查看答案
如图,⊙O的直径AB=6cm,P是AB延长线上的一点,过P点作⊙O的切线,切点为C,连接AC.
(1)若∠CPA=30°,求PC的长;
(2)若点P在AB的延长线上运动,∠CPA的平分线交AC于点M,你认为∠CMP的大小是否发生变化?若变化,请说明理由;若不变,求出∠CMP的值.

manfen5.com 满分网 查看答案
为缓解“停车难”的问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图,按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE.
(sin18°≈0.3090,cos18°≈0.9511,tan18°≈0.3249)(精确到0.1m)manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.