如图,在平面直角坐标系中,直角梯形ABCO的边OC落在x轴的正半轴上,且AB∥OC,BC⊥OC,AB=4,BC=6,OC=8.正方形ODEF的两边分别落在坐标轴上,且它的面积等于直角梯形ABCO面积.将正方形ODEF沿x轴的正半轴平行移动,设它与直角梯形ABCO的重叠部分面积为S.
(1)分析与计算:求正方形ODEF的边长;
(2)操作与求【解析】
①正方形ODEF平行移动过程中,通过操作、观察,试判断S(S>0)的变化情况是______;
A、逐渐增大B、逐渐减少C、先增大后减少D、先减少后增大
②当正方形ODEF顶点O移动到点C时,求S的值;
(3)探究与归纳:
设正方形ODEF的顶点O向右移动的距离为x,求重叠部分面积S与x的函数关系式.
考点分析:
相关试题推荐
已知抛物线y=mx
2-(m-5)x-5(m>0)与x轴交于两点A(x
1,0)、B(x
2,0)(x
1<x
2),与y轴交于点C,且AB=6.
(1)求抛物线和直线BC的解析式;
(2)在给定的直角坐标系中,画出抛物线和直线BC;
(3)若⊙P过A、B、C三点,求⊙P的半径;
(4)抛物线上是否存在点M,过点M作MN⊥x轴于点N,使△MBN被直线BC分成面积比为1:3的两部分?若存在,请求出点M的坐标;若不存在,请说明理由.
查看答案
某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据下表提供的信息,解答以下问题:
土特产品种 | A | B | C |
每辆汽车运载量(吨) | 8 | 6 | 5 |
每吨土特产获利(百元) | 12 | 16 | 10 |
(1)设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,求y与x之间的函数关系式.
(2)如果装运每种土特产的车辆都不少于3辆,那么车辆的安排方案有几种并写出每种安排方案.
(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.
查看答案
如图,水平面上放置一圆锥,在圆锥顶端斜靠着一根木棒(木棒的厚度可忽略不计),
小明为了探究这个问题,将此情景画在了草稿纸上(如图2正视图),运动过程:木棒顶端从A点开始沿圆锥的母线下滑,速度为θ
1(木棒下滑为匀速),已知木棒与水平地面的夹角为θ,θ随木棒的下滑而不断减小,θ的最大值为30°,若木棒长为
,问:当木棒顶端重A滑到B这个过程中,木棒末端的速度v′
2是多少?
查看答案
如图,⊙O的直径AB=6cm,P是AB延长线上的一点,过P点作⊙O的切线,切点为C,连接AC.
(1)若∠CPA=30°,求PC的长;
(2)若点P在AB的延长线上运动,∠CPA的平分线交AC于点M,你认为∠CMP的大小是否发生变化?若变化,请说明理由;若不变,求出∠CMP的值.
查看答案
为缓解“停车难”的问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图,按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE.
(sin18°≈0.3090,cos18°≈0.9511,tan18°≈0.3249)(精确到0.1m)
查看答案