满分5 > 初中数学试题 >

如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA=cm,OC...

如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA=manfen5.com 满分网cm,OC=8cm,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒manfen5.com 满分网cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1cm的速度匀速运动、设运动时间为t秒.
(1)用t的式子表示△OPQ的面积S;
(2)求证:四边形OPBQ的面积是一个定值,并求出这个定值;
(3)当△OPQ与△PAB和△QPB相似时,抛物线y=manfen5.com 满分网x2+bx+c经过B、P两点,过线段BP上一动点M作y轴的平行线交抛物线于N,当线段MN的长取最大值时,求直线MN把四边形OPBQ分成两部分的面积之比.

manfen5.com 满分网
(1)根据P、Q的运动速度,可用t表示出CQ、OP的长,进而根据OC的长求出OQ的表达式,即可由三角形的面积公式得到S、t的函数关系式; (2)四边形OPBQ的面积,可由矩形OABC、△QBC、△ABP的面积差求得,进而可得到所求的定值; (3)若△OPQ与△PAB和△QPB相似,那么△QPB必为直角三角形,且∠QPB=90°;由于∠BQP≠∠OPQ,所以这三个相似三角形的对应关系是△OPQ∽△PBQ∽△ABP,根据相似三角形得到的比例线段求出t的值,进而可确定点P的坐标,求出抛物线和直线BP的解析式;可设M点的横坐标为m,根据直线BP和抛物线的解析式,求出M、N的纵坐标,进而可得到关于MN的长与m的函数关系式,根据函数的性质即可求出MN的最大值及对应的M点坐标;设BQ与直线MN的交点为H,根据M点的坐标和直线BQ的解析式即可求出H点的坐标,也就能得到MH的长,以MH为底,B、M横坐标差的绝对值为高,可求出△BHM的面积,进而可根据四边形OPBQ的面积求出五边形OPMHQ的面积,由此可求出它们的比例关系式. (1)【解析】 ∵CQ=t,OP=t,CO=8, ∴OQ=8-t. ∴S△OPQ=(0<t<8);(3分) (2)证明:∵S四边形OPBQ=S矩形ABCO-S△CBQ-S△PAB ==32;(5分) ∴四边形OPBQ的面积为一个定值,且等于32;(6分) (3)【解析】 当△OPQ与△PAB和△QPB相似时,△QPB必须是一个直角三角形,依题意只能是∠QPB=90°, 又∵BQ与AO不平行, ∴∠QPO不可能等于∠PQB,∠APB不可能等于∠PBQ, ∴根据相似三角形的对应关系只能是△OPQ∽△PBQ∽△ABP(7分), ∴=, ∴, 解得:t1=4,t2=8 经检验:t=4是方程的解且符合题意,t=8不是方程的解,舍去;(从边长关系和速度考虑), ∴QO=4, ∴直线QB的解析式为:y=x+4, 此时P(,0); ∵B(,8)且抛物线经过B、P两点, ∴抛物线是,直线BP是:(8分). 设M(m,)、N(m,). ∵M在BP上运动, ∴ ∵与交于P、B两点且抛物线的顶点是P; ∴当时,y1<y2(9分) ∴MN=|y1-y2| =|m2-2m+8-(m-8)| =m-8-(m2-2m+8) =m-8-m2+2m-8 =-m2+3m-16 =, ∴当时,MN有最大值是2; ∴设MN与BQ交于H点则,; ∴S△BHM== ∴S△BHM:S五边形QOPMH==3:29 ∴当MN取最大值时两部分面积之比是3:29.(10分)
复制答案
考点分析:
相关试题推荐
恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.
(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式.
(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用)
(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?
查看答案
已知关于x的方程k2x2+(2k-1)x+1=0有两个不相等的实数根x1,x2
(1)求k的取值范围;
(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.
查看答案
如图,不透明圆锥体DEC放在水平面上,在A处灯光照射下形成影子.设BP过底面圆的圆心,已知圆锥体的高为manfen5.com 满分网m,底面半径为2m,BE=4m.
(1)求∠B的度数;
(2)若∠ACP=2∠B,求光源A距水平面的高度.(答案用含根号的式子表示)

manfen5.com 满分网 查看答案
据2005年5月8日《南通日报》报道:今年“五•一”黄金周期间,我市实现旅游收入再创历史新高,旅游消费呈现多样化,各项消费所占的比例如图秘所示,其中住宿消费为3438.24万元.
(1)求我市今年“五•一”黄金周期间旅游消费共多少亿元?旅游消费中各项消费的中位数是多少万元?
(2)对于“五•一”黄金周期间的旅游消费,如果我市2007年要达到3.42亿元的目标,那么,2005年到2007年的平均增长率是多少?

manfen5.com 满分网 查看答案
如图,四边形ABCD是菱形,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F,连接CE.
(1)求证:∠DAE=∠DCE;
(2)当AE=2EF时,判断FG与EF有何等量关系?并证明你的结论.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.