满分5 > 初中数学试题 >

如图,在平面直角坐标系中,矩形OABC的顶点A(0,3),C(-1,0),将矩形...

如图,在平面直角坐标系中,矩形OABC的顶点A(0,3),C(-1,0),将矩形OABC绕原点顺时针旋转90°,得到矩形OA′B′C′.设直线BB′与x轴交于点M、与y轴交于点N,抛物线y=ax2+2x+c的图象经过点C、M、N.解答下列问题:
(1)分别求出直线BB′和抛物线所表示的函数解析式;
(2)将△MON沿直线MN翻折,点O落在点P处,请你判断点P是否在抛物线上,说明理由;
(3)将抛物线进行平移(沿上下或左右方向),使它经过点C′,求此时抛物线的解析式.

manfen5.com 满分网
(1)由题意可知B,B′的坐标,可用待定系数法求得一次函数的解析式.由一次函数解析式可得到M,N两点的坐标,代入二次函数即可求得二次函数的解析式; (2)设P点坐标为(x,y),连接OP,PM,由对称的性质可得出OP⊥MN,OE=PE,PM=OM=5,再由勾股定理求出MN的长,由三角形的面积公式得出OE的长,利用两点间的距离公式求出x、y的值,把x的值代入二次函数关系式看是否适合即可; (3)可上下平移,横坐标等于C′的横坐标,左右平移,纵坐标等于C′的纵坐标. 【解析】 (1)由题意得,B(-1,3),B'(3,1), ∴直线BB′的解析式为, 直线BB′与x轴的交点为M(5,0),与y轴的交点N(0,), 设抛物线的解析式为y=a(x-5)(x+1), ∵抛物线过点N, ∴, ∴, ∴抛物线的解析式为=; (2)设P点坐标为(x,y),连接OP,PM,OP交NM于E, ∵O、P关于直线MN对称, ∴OP⊥MN,OE=PE,PM=OM=5, ∵N(0,),M(5,0), ∴MN===,OE===, ∴OP=2OE=2, ∴OP==2①, PM==5②, ①②联立,解得, 把x=2代入二次函数的解析式y=-x2+2x+得,y=, ∴点P不在此二次函数的图象上; (3)若抛物线上下平移经过点C',此时解析式为, 当y=1时,, ∴,=, 若抛物线向左平移经过点C',平移距离为, 此时解析式为=, 若抛物线向右平移经过点C', 此时解析式为.
复制答案
考点分析:
相关试题推荐
一、阅读理【解析】

在△ABC中,BC=a,CA=b,AB=c;
(1)若∠C为直角,则a2+b2=c2
(2)若∠C为锐角,则a2+b2与c2的关系为:a2+b2>c2
证明:如图过A作AD⊥BC于D,则BD=BC-CD=a-CD
在△ABD中:AD2=AB2-BD2
在△ACD中:AD2=AC2-CD2
AB2-BD2=AC2-CD2
c2-(a-CD)2=b2-CD2
∴a2+b2-c2=2a•CD
∵a>0,CD>0
∴a2+b2-c2>0,所以:a2+b2>c2
(3)若∠C为钝角,试推导a2+b2与c2的关系.
二、探究问题:在△ABC中,BC=a=3,CA=b=4,AB=c;若△ABC是钝角三角形,求第三边c的取值范围.

manfen5.com 满分网 查看答案
姚明将带队来我市体育馆进行表演比赛,市体育局在策划本次活动,在与单位协商团购票时推出两种方案.设购买门票数为x(张),总费用为y(元).
方案一:若单位赞助广告费8000元,则该单位所购门票的价格为每张50元;(总费用=广告赞助费+门票费)
方案二:直接购买门票方式如图所示.
解答下列问题:
(1)方案一中,y与x的函数关系式为______
方案二中,当0≤x≤100时,y与x的函数关系式为______
当x>100时,y与x的函数关系式为______
(2)如果购买本场篮球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由;
(3)甲、乙两单位分别采用方案一、方案二购买本场篮球赛门票共700张,花去总费用计56000元,求甲、乙两单位各购买门票多少张.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=AD=AO.
(1)求证:BD是⊙O的切线;
(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为8,cos∠BFA=manfen5.com 满分网,求△ACF的面积.
查看答案
某工厂大楼后面紧邻着一个土坡,坡上面是一块平地,如图所示,BC∥AD,斜坡AB长22m,坡角∠BAD=60°,为了防止山体滑坡,保障安全,工厂决定对该土坡进行改造.经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡.
(1)求改造前坡顶与地面的距离BE的长;
(2)为确保安全,工厂计划改造时保持坡脚A不动,坡顶B沿BC削进到F点处,问BF至少是多少米?

manfen5.com 满分网 查看答案
一个不透明的盒子中放有四张分别写有数字1,2,3,4的红色卡片和三张分别写有数字1,2,3的蓝色卡片,卡片除颜色和数字外完全相同.
(1)从中任意抽取一张卡片,求该卡片上写有数字1的概率;
(2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数组成一个两位数,求这个两位数大于22的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.