满分5 > 初中数学试题 >

阅读材料: 如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条...

阅读材料:
如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高”(h).我们可得出一种计算三角形面积的新方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.
manfen5.com 满分网
解答下列问题:
如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),点P是抛物线(在第一象限内)上的一个动点.
(1)求抛物线的解析式;
(2)若点B为抛物线与y轴的交点,求直线AB的解析式;
(3)设点P是抛物线(第一象限内)上的一个动点,是否存在一点P,使S△PAB=S△CAB?若存在,求出点P的坐标;若不存在,请说明理由.
(1)已知抛物线的顶点和抛物线上的几点,即可利用顶点式求解析式; (2)利用A,B两点的坐标,由待定系数法求一次函数解析式即可; (3)根据S△PAB=S△CAB即可得到一个关于点P的横坐标的方程,即可求出方程根的情况,进而得到不存在符合要求的P点. 【解析】 (1)设抛物线的解析式为:y1=a(x-1)2+4, 把A(3,0)代入解析式求得a=-1, 所以y1=-(x-1)2+4=-x2+2x+3, (2)设直线AB的解析式为:y2=kx+b, 求得B点的坐标为(0,3), 把A(3,0),B(0,3)代入y2=kx+b中, , 解得: 所以y2=-x+3, (3)因为C点坐标为(1,4), 所以当x=1时,y1=4,y2=2, 所以CD=4-2=2, , 假设存在符合条件的点P,设点P的横坐标是x,△PAB的铅垂高为h, 则h=y1-y2=(-x2+2x+3)-(-x+3)=-x2+3x, 由S△PAB=S△CAB, 得:×3×(-x2+2x)=3 化简得:x2-2x+2=0, ∵b2+4ac=4-8=-4<0, ∴此方程无实数根, ∴不存在这样的点使S△PAB=S△CAB.
复制答案
考点分析:
相关试题推荐
在一次机器人测试中,要求机器人从A出发到达B处.如图1,已知点A在O的正西方600cm处,B在O的正北方300cm处,且机器人在射线AO及其右侧(AO下方)区域的速度为20cm/秒,在射线AO的左侧(AO上方)区域的速度为10cm/秒.manfen5.com 满分网
(1)分别求机器人沿A→O→B路线和沿A→B路线到达B处所用的时间(精确到秒);
(2)若∠OCB=45°,求机器人沿A→C→B路线到达B处所用的时间(精确到秒);
(3)如图2,作∠OAD=30°,再作BE⊥AD于E,交OA于P.试说明:从A出发到达B处,机器人沿A→P→B路线行进所用时间最短.
(参考数据:manfen5.com 满分网≈1.414,manfen5.com 满分网≈1.732,manfen5.com 满分网≈2.236,manfen5.com 满分网≈2.449)
查看答案
如图,在梯形ABCD中,已知AD∥BC,∠B=90°,AB=7,AD=9,BC=12,在线段BC上任取一点E,连接DE,作EF⊥DE,交直线AB于点F.
(1)若点F与B重合,求CE的长;
(2)若点F在线段AB上,且AF=CE,求CE的长;
(3)设CE=x,BF=y,写出y关于x的函数关系式(直接写出结果可).

manfen5.com 满分网 查看答案
如图,已知反比例函数y=manfen5.com 满分网(x>0)的图象与一次函数y=-x+b的图象分别交于A(1,3)、B两点.
(1)求m、b的值;
(2)若点M是反比例函数图象上的一动点,直线MC⊥x轴于C,交直线AB于点N,MD⊥y轴于D,NE⊥y轴于E,设四边形MDOC、NEOC的面积分别为S1、S2,S=S2-S1,求S的最大值.

manfen5.com 满分网 查看答案
如图,A、B、C、D、E、F是⊙O的六等分点.
(1)连接AB、AD、AF,求证:AB+AF=AD;
(2)若P是圆周上异于已知六等分点的动点,连接PB、PD、PF,写出这三条线段长度的数量关系(不必说明理由).

manfen5.com 满分网 查看答案
小国同学的父亲参加旅游团到某地旅游,准备买某种礼物送给小国.据了解,沿旅游线路依次有A、B、C三个地点可以买到此种礼物,其质量相当,价格各不相同,但不知哪家更便宜.由于时间关系,随团旅游车不会掉头行驶.
(1)若到A处就购买,写出买到最低价格礼物的概率;
(2)小国同学的父亲认为,如果到A处不买,到B处发现比A处便宜就马上购买,否则到C处购买,这样更有希望买到最低价格的礼物.这个想法是否正确?试通过树状图分析说明.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.