满分5 > 初中数学试题 >

如图1,在正方形ABCD中,点E、F分别为边BC、CD的中点,AF、DE相交于点...

如图1,在正方形ABCD中,点E、F分别为边BC、CD的中点,AF、DE相交于点G,则可得结论:①AF=DE,②AF⊥DE(不须证明).
(1)如图②,若点E、F不是正方形ABCD的边BC、CD的中点,但满足CE=DF,则上面的结论①、②是否仍然成立;(请直接回答“成立”或“不成立”)
(2)如图③,若点E、F分别在正方形ABCD的边CB的延长线和DC的延长线上,且CE=DF,此时上面的结论①、②是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.
(3)如图④,在(2)的基础上,连接AE和EF,若点M、N、P、Q分别为AE、EF、FD、AD的中点,请先判断四边形MNPQ是“矩形、菱形、正方形、等腰梯形”中的哪一种,并写出证明过程.
manfen5.com 满分网
(1)根据正方形的性质证明△DEC≌△AFD即可知道结论成立. (2)由已知得四边形ABCD为正方形,证明Rt△ADF≌Rt△ECD,然后推出∠ADE+∠DAF=90°;进而得出AF⊥DE; (3)首先根据题意证明四边形MNPQ是菱形,然后又因为AF⊥DE,得出四边形MNPQ为正方形. 【解析】 (1)∵DF=CE,AD=DC,且∠ADF=∠DCE, ∴△DEC≌△AFD; ∴结论①、②成立(1分) (2)结论①、②仍然成立.理由为: ∵四边形ABCD为正方形, ∴AD=DC=CB且∠ADC=∠DCB=90°, 在Rt△ADF和Rt△ECD中 , ∴Rt△ADF≌Rt△ECD(SAS),(3分) ∴AF=DE, ∴∠DAF=∠CDE, ∵∠ADE+∠CDE=90°, ∴∠ADE+∠DAF=90°, ∴∠AGD=90°, ∴AF⊥DE;(5分) (3)结论:四边形MNPQ是正方形(6分) 证明:∵AM=ME,AQ=QD, ∴MQ∥DE且MQ=DE, 同理可证:PN∥DE,PN=DE;MN∥AF,MN=AF;PQ∥AF,PQ=AF; ∵AF=DE, ∴MN=NP=PQ=QM, ∴四边形MNPQ是菱形,(8分) 又∵AF⊥DE, ∴∠MQP=90°, ∴四边形MNPQ是正方形.(10分)
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系xoy中,M是x轴正半轴上一点,⊙M与x轴的正半轴交于A,B两点,A在B的左侧,且OA,OB的长是方程x2-12x+27=0的两根,ON是⊙M的切线,N为切点,N在第四象限.
(1)求⊙M的直径;
(2)求直线ON的解析式;
(3)在x轴上是否存在一点T,使△OTN是等腰三角形?若存在请在图2中标出T点所在位置,并画出△OTN(要求尺规作图,保留作图痕迹,不写作法,不证明,不求T的坐标);若不存在,请说明理由.
manfen5.com 满分网
查看答案
已知点M(p,q)在抛物线y=x2-1上,若以M为圆心的圆与x轴有两个交点A、B,且A、B两点的横坐标是关于manfen5.com 满分网x的方程x2-2px+q=0的两根.
(1)当M在抛物线上运动时,⊙M在x轴上截得的弦长是否变化?为什么?
(2)若⊙M与x轴的两个交点和抛物线的顶点C构成一个等腰三角形,试求p、q的值.
查看答案
某中学为了培养学生的社会实践能力,今年“五•一”长假期间要求学生参加一项社会调查活动.为此,小明在他所居住小区的600个家庭中,随机调查了50个家庭在新工资制度实施后的收入情况,并绘制了如下的频数分布表和频数分布直方图.(收入取整数,单位:元)
请你根据以上提供的信息,解答下列问题:
(1)补全频数分布表和频数分布直方图;
(2)这50个家庭收入的中位数落在______小组;
(3)请你估算该小区600个家庭中收入较低(不足1400元)的家庭个数大约有多少?
分 组频 数频 率
1000~120030.060
1200~1400120.240
1400~1600180.360
1600~18000.200
1800~20005
2000~220020.040
合计501.000


manfen5.com 满分网 查看答案
如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度为manfen5.com 满分网(即tan∠PAB=manfen5.com 满分网),且O,A,B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器的高度忽略不计,结果保留根号形式)

manfen5.com 满分网 查看答案
如图,一个工件是由大长方体上面中间部位挖去一个小长方体后形成,主视图是凹字形的轴对称图形.
(1)请在答题卷指定的位置补画该工件的俯视图;
(2)若该工件的前侧面(即主视图部位)需涂油漆,根据图中尺寸(单位:cm),计算需涂油漆部位的面积.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.