满分5 > 初中数学试题 >

如图所示,抛物线m:y=ax2+b(a<0,b>0)与x轴于点A、B(点A在点B...

如图所示,抛物线m:y=ax2+b(a<0,b>0)与x轴于点A、B(点A在点B的左侧),与y轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1,与x轴的另一个交点为A1
(1)当a=-1,b=1时,求抛物线n的解析式;
(2)四边形AC1A1C是什么特殊四边形,请写出结果并说明理由;
(3)若四边形AC1A1C为矩形,请求出a,b应满足的关系式.

manfen5.com 满分网
(1)根据a=-1,b=1得出抛物线m的解析式,再利用C与C1关于点B中心对称,得出二次函数的顶点坐标,即可得出答案; (2)利用两组对边分别相等的四边形是平行四边形即可证明; (3)利用矩形性质得出要使平行四边形AC1A1C是矩形,必须满足AB=BC,即可求出. 【解析】 (1)当a=-1,b=1时,抛物线m的解析式为:y=-x2+1. 令x=0,得:y=1.∴C(0,1). 令y=0,得:x=±1. ∴A(-1,0),B(1,0), ∵C与C1关于点B中心对称, ∴抛物线n的解析式为:y=(x-2)2-1=x2-4x+3; (2) 四边形AC1A1C是平行四边形. 理由:连接AC,AC1,A1C, ∵C与C1、A与A1都关于点B中心对称, ∴AB=BA1,BC=BC1, ∴四边形AC1A1C是平行四边形. (3)令x=0,得:y=b.∴C(0,b). 令y=0,得:ax2+b=0,∴, ∴, ∴. 要使平行四边形AC1A1C是矩形,必须满足AB=BC, ∴,∴, ∴ab=-3. ∴a,b应满足关系式ab=-3.
复制答案
考点分析:
相关试题推荐
如图,一次函数的图象与反比例函数manfen5.com 满分网的图象相交于A点,与y轴、x轴分别相交于B、C两点,且C(2,0).当x<-1时,一次函数值大于反比例函数值,当x>-1时,一次函数值小于反比例函数值.
(1)求一次函数的解析式;
(2)设函数y2=manfen5.com 满分网的图象与manfen5.com 满分网的图象关于y轴对称,在y2=manfen5.com 满分网的图象上取一点P(P点的横坐标大于2),过P作PQ丄x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.

manfen5.com 满分网 查看答案
某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x(辆),购车总费用为y(万元).
(1)求y与x的函数关系式(不要求写出自变量x的取值范围);
(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求 出该方案所需费用.
查看答案
如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(取manfen5.com 满分网=1.732,结果精确到1m)

manfen5.com 满分网 查看答案
2011年,陕西西安被教育部列为“减负”工作改革试点地区.学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了______名学生;
(2)将图①补充完整;
(3)求出图②中C级所占的圆心角的度数;
(4)根据抽样调查结果,请你估计我市近80000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?

manfen5.com 满分网 查看答案
如图,在△ABC中,AD是中线,分别过点B、C作AD延长线及AD的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.