满分5 > 初中数学试题 >

如图,已知抛物线y=a(x-1)2+3(a≠0)经过点A(-2,0),抛物线的顶...

如图,已知抛物线y=a(x-1)2+3manfen5.com 满分网(a≠0)经过点A(-2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连接BC.
(1)求该抛物线的解析式;
(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问当t为何值时,四边形DAOP分别为平行四边形,直角梯形,等腰梯形?
(3)若OC=OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.

manfen5.com 满分网
(1)将A的坐标代入抛物线y=a(x-1)2+3(a≠0)可得a的值,即可得到抛物线的解析式; (2)易得D的坐标,过D作DN⊥OB于N;进而可得DN、AN、AD的长,根据平行四边形,直角梯形,等腰梯形的性质,用t将其中的关系表示出来,并求解可得答案; (3)根据(2)的结论,易得△OCB是等边三角形,可得BQ、PE关于t的关系式,将四边形的面积用t表示出来,进而分析可得最小值及此时t的值,进而可求得PQ的长. 【解析】 (1)∵抛物线y=a(x-1)2+3(a≠0)经过点A(-2,0), ∴0=9a+3, ∴a=-(1分) ∴二次函数的解析式为:y=-x2+x+;(3分) (2)①∵D为抛物线的顶点, ∴D(1,3), 过D作DN⊥OB于N,则DN=3,AN=3, ∴AD==6, ∴∠DAO=60°.(4分) ∵OM∥AD, ①当AD=OP时,四边形DAOP是平行四边形, ∴OP=6, ∴t=6(s).(5分) ②当DP⊥OM时,四边形DAOP是直角梯形, 过O作OH⊥AD于H,AO=2,则AH=1(如果没求出∠DAO=60°可由Rt△OHA∽Rt△DNA(求AH=1) ∴OP=DH=5,t=5(s)(6分) ③当PD=OA时,四边形DAOP是等腰梯形, 易证:△AOH≌△DPP′, ∴AH=CP, ∴OP=AD-2AH=6-2=4, ∴t=4(s)综上所述:当t=6、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形;(7分) (3)由(2)及已知,∠COB=60°,OC=OB,△OCB是等边三角形则OB=OC=AD=6,OP=t,BQ=2t, ∴OQ=6-2t(0<t<3)过P作PE⊥OQ于E, 则PE=t(8分) ∴SBCPQ=×6×3×(6-2t)×t =(t-)2+(9分) 当t=时,四边形BCPQ的面积最小值为.(10分) ∴此时OQ=3,OP=,OE=; ∴QE=3-=,PE=, ∴PQ=.(11分)
复制答案
考点分析:
相关试题推荐
某校八年级学生小丽,小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.
小丽:如果以10元/千克的价格销售,那么每天可售出300千克.
小强:如果以13元/千克的价格销售,那么每天可获取利润750元.
小红:通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.
(1)求y(千克)与x(元)(x>0)的函数关系式;
(2)当销售单价为何值时,该超市销售这种水果每天获得的利润达600元?[利润=销售量×(销售单价-进价)].
(3)一段时间后,发现这种水果每天的销售量均低于225千克,则此时该超市销售这种水果每天获取的利润最大是多少?
查看答案
如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=4,点P是斜边AB上一个动点,点D是CP的中点,延长BD至E,使DE=BD,连接AE.
(1)求四边形PCEA的面积;
(2)当AP的长为何值时,四边形PCEA是平行四边形;
(3)当AP的长为何值时,四边形PCEA是直角梯形.

manfen5.com 满分网 查看答案
我市花石镇组织10辆汽车装运完A、B、C三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下表提供的信息,解答以下问题:
①设装运A种湘莲的车辆数为x,装运B种湘莲的车辆数为y,求y与x之间的函数关系式;
②如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案;
③若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.
湘 莲 品 种ABC
每辆汽车运载量(吨)12108
每吨湘莲获利(万元)342

查看答案
联合国规定每年的6月5日是“世界环境日”,为配合今年的“世界环境日”宣传活动,某校课外活动小组对全校师生开展了以“爱护环境,从我做起”为主题的问卷调查活动,将调查结果分析整理后,制成了上面的两个统计图.
其中:A:能将垃圾放到规定的地方,而且还会考虑垃圾的分类;
B:能将垃圾放到规定的地方,但不会考虑垃圾的分类;
C:偶尔会将垃圾放到规定的地方;
D:随手乱扔垃圾.
manfen5.com 满分网
根据以上信息回答下列问题:
(1)该校课外活动小组共调查了多少人?并补全上面的条形统计图;
(2)如果该校共有师生2400人,那么随手乱扔垃圾的约有多少人?
查看答案
如图所示,点P表示广场上的一盏照明灯.
(1)请你在图中画出小敏在照明灯P照射下的影子(用线段表示);
(2)若小丽到灯柱MO的距离为4.5米,照明灯P到灯柱的距离为1.5米,小丽目测照明灯P的仰角为55°,她的目高QB为1.6米,试求照明灯P到地面的距离(结果精确到0.1米).
(参考数据:tan55°≈1.428,sin55°≈0.819,cos55°≈0.574)
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.