满分5 > 初中数学试题 >

如图①所示,在直角梯形ABCD中,∠BAD=90°,E是直线AB上一点,过E作直...

如图①所示,在直角梯形ABCD中,∠BAD=90°,E是直线AB上一点,过E作直线l∥BC,交直线CD于点F.将直线l向右平移,设平移距离BE为t(t≥0),直角梯形ABCD被直线l扫过的面积(图中阴影部分)为S,S关于t的函数图象如图②所示,OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为4.
manfen5.com 满分网
信息读取
(1)梯形上底的长AB=______
(2)直角梯形ABCD的面积=______
图象理解
(3)写出图②中射线NQ表示的实际意义;
(4)当2<t<4时,求S关于t的函数关系式;
问题解决
(5)当t为何值时,直线l将直角梯形ABCD分成的两部分面积之比为1:3.
(1)根据图②可知,当0≤t≤2时,E在线段AB上运动(包括与A、B重合),在此期间E点运动了2,因此可求得AB的长为2. (2)根据图形可知:当2<t<4时,E在AB的延长线上,且F在D点左侧,此期间E点运动了2,因此下底长为2+2=4,根据t=2时,重合部分的面积为8可求出梯形的高为4,因此梯形的面积为×(2+4)×4=12. (3)当t>4时,直线l与梯形没有交点,因此扫过的面积恒为梯形的面积12. (4)当2<t<4时,直线扫过梯形的部分是个五边形,如果设直线l与AD的交点为0,那么重合部分的面积可用梯形的面积减去三角形OFD的面积来求得.梯形的面积在(2)中已经求得.三角形OFD中,底边DF=4-t,而DF上的高,可用DF的长和∠BCD的正切值求出,由此可得出S,t的函数关系式. (5)本题要分情况讨论: ①当0<t<2时,重合部分的平行四边形的面积:直角梯形AEFD的面积=1:3,据此可求出t的值. ②当2<t<4时,重合部分的五边形的面积:三角形OFD的面积=3:1,由此可求出t的值. 【解析】 由题意得: (1)AB=2. (2)S梯形ABCD=12. (3)当平移距离BE大于等于4时,直角梯形ABCD被直线l扫过的面积恒为12. (4)当2<t<4时,如图所示, 直角梯形ABCD被直线l扫过的面积S=S直角梯形ABCD-SRt△DOF =12-(4-t)×2(4-t)=-t2+8t-4. (5)①当0<t<2时,有4t:(12-4t)=1:3,解得t=. ②当2<t<4时,有(-t2+8t-4):[12-(-t2+8t-4)]=3:1, 即t2-8t+13=0, 解得t=4-,t=4+ (舍去). 答:当t= 或t=4-时,直线l将直角梯形ABCD分成的两部分面积之比为1:3.
复制答案
考点分析:
相关试题推荐
(1)如图(1),OA、OB是⊙O的两条半径,且OA⊥OB,点C是OB延长线上任意一点,过点C作CD切⊙O于点D,连接AD交OC于点E.
求证:CD=CE;
(2)若将图(2)中的半径OB所在直线向上平行移动交OA于F,交⊙O于B′,其他条件不变,那么上述结论CD=CE还成立吗?为什么?
(3)若将图(3)中的半径OB所在直线向上平行移动到⊙O外的CF,点E是DA的延长线与CF的交点,其他条件不变,那么上述结论CD=CE还成立吗?为什么?
manfen5.com 满分网
查看答案
如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度为manfen5.com 满分网(即tan∠PAB=manfen5.com 满分网),且O,A,B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器的高度忽略不计,结果保留根号形式)

manfen5.com 满分网 查看答案
甲、乙两超市(大型商场)同时开业,为了吸引顾客,都举行有奖酬宾活动:凡购物满100元,均可得到一次摸奖的机会.在一个纸盒里装有2个红球和2个白球,除颜色外其它都相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少.(如下表)
甲超市:
两红一红一白两白
礼金券(元)5105
乙超市:
两红一红一白两白
礼金券(元)10510
(1)用树状图表示得到一次摸奖机会时中礼金券的所有情况;
(2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由.
查看答案
如图,在平面直角坐标系xOy中,矩形OEFG的顶点E的坐标为(4,0),顶点G的坐标为(0,2),将矩形OEFG绕点O逆时针旋转,使点F落在y轴的点N处,得到矩形OMNP,OM与GF交于点A.
(1)判断△OGA和△OMN是否相似,并说明理由;
(2)求图象经过点A的反比例函数的解析式;
(3)设(2)中的反比例函数图象交EF于点B,求直线AB的解析式.

manfen5.com 满分网 查看答案
王老师为了了解学生在数学学习中常见错误的纠正情况,收集整理了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对他所教的初三(1)班和(2)班进行了检测.如图表示从两班各随机抽取的10名学生的得分情况:
(1)利用图中提供的信息,补全下表:
班级平均数(分)中位数(分)众数(分)
(1)班2424
(2)班24
(2)若把24分以上(含24分)记为”优秀”,两班各40名学生,请估计两班各有多少名学生成绩优秀;
(3)观察图中数据分布情况,你认为哪个班的学生纠错的得分情况比较整齐一些,并说明原因.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.