满分5 > 初中数学试题 >

如图所示,在Rt△ABC中,∠C=90°,BC=3,CA=4,∠ABC的角平分线...

如图所示,在Rt△ABC中,∠C=90°,BC=3,CA=4,∠ABC的角平分线BD交AC于点D,点E是线段AB上的一点,以BE为直径的圆O过点D.
(1)求证:AC是圆O的切线;
(2)求AE的长.

manfen5.com 满分网
(1)连接OD,证OD⊥AC即可;由于OB=OD,且BD平分∠ABC,利用角平分线的定义以及等边对等角可求得∠ODB=∠OBD=∠CBD,由此可证得OD∥BC,而BC⊥AC,即OD⊥AC,由此得证. (2)根据∠DAO的正切值,可求出AD、OD的比例关系,可用未知数表示出两者的长,进而可求得BE、AE的表达式,由于AE+BE=AB=5,由此可求出未知数的值,也就得到了AE的长. (1)证明:连接OD, ∵OD=OB, ∴∠ODB=∠OBD; ∵BD平分∠ABC, ∴∠OBD=∠CBD,即∠ODB=∠CBD, ∴OD∥BC, ∵BC⊥AC, ∴OD⊥AC; 又∵点D在⊙O上, ∴AC是⊙O的切线. (2)【解析】 Rt△ABC中,AC=4,BC=3,则AB=5; 在Rt△AOD中,设AD=4x,则OD=3x,OA=5x; ∵OE=OD=3x, ∴AE=OA-OE=2x, 由于AB=AE+BE=2x+6x=5,故x=, ∴AE=2x=.
复制答案
考点分析:
相关试题推荐
已知:如图,在平面直角坐标系xOy中,直线AB分别与x、y轴交于点B、A,与反比例函数的图象分别交于点C、D,CE⊥x轴于点E,tan∠ABO=manfen5.com 满分网,OB=4,OE=2.
(1)求该反比例函数的解析式;
(2)求直线AB的解析式.

manfen5.com 满分网 查看答案
一个不透明的口袋里装有红、黄、绿三种颜色的小球(除颜色不同外其余都相同),其中红球2个(分别标有1号、2号),黄球1个,从中任意摸出1球是绿球的概率是manfen5.com 满分网
(1)试求口袋中绿球的个数;
(2)小明和小刚玩摸球游戏:第一次从口袋中任意摸出1球(不放回),第二次再摸出1球.两人约定游戏胜负规则如下:
manfen5.com 满分网
你认为这种游戏胜负规则公平吗?请用列表或画树状图的方法说明理由;若你认为不公平,请修改游戏胜负规则,使游戏变得公平.
查看答案
化简求值:manfen5.com 满分网,其中x=-manfen5.com 满分网
查看答案
解不等式manfen5.com 满分网,并将解集在数轴上表示出来.
查看答案
如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB,BC,CA至点A1,B1,C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1,B1,C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2;…;按此规律继续下去,可得到△A5B5C5,则其面积S5=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.