如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(6,0),(6,8).动点M、N分别从O、B同时出发,以每秒1个单位的速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点N作NP⊥BC,交AC于P,连接MP.已知动点运动了x秒.
(1)P点的坐标为多少;(用含x的代数式表示)
(2)试求△MPA面积的最大值,并求此时x的值;
(3)请你探索:当x为何值时,△MPA是一个等腰三角形?你发现了几种情况?写出你的研究成果.
考点分析:
相关试题推荐
如图1,已知四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,
(1)若取AB的中点M,可证AE=EF,请写出证明过程.
(2)如图2,若点E是BC的延长线上(除C点外)的任意一点,其他条件不变,那么结论“AE=EF”是否仍然成立,若成立,请写出证明过程;若不成立,请说明理由;
查看答案
阅读下面的材料:在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数y=k
1x+b
1(k
1≠0)的图象为直线l
1,一次函数y=k
2x+b
2(k
2≠0)的图象为直线l
2,若k
1=k
2,且b
1≠b
2,我们就称直线l
1与直线l
2互相平行.解答下面的问题:
(1)求过点P(1,4)且与已知直线y=-2x-1平行的直线l的函数表达式,并画出直线l的图象;
(2)设直线l分别与y轴、x轴交于点A、B,如果直线m:y=kx+t(t>0)与直线l平行且交x轴于点C,求出△ABC的面积S关于t的函数表达式.
查看答案
如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点E.
(1)求∠AEC的度数;
(2)求证:四边形OBEC是菱形.
查看答案
某轿车制造厂根据市场需求,计划生产A、B两种型号的轿车共100台,该厂所筹生产资金不少于2240万元,但不超过2250万元,且所筹资金全部用于生产,所生产的这两种型号的轿车可全部售出,生产的成本和售价如右表所示:
型号 | A | B |
成本(万元/台) | 20 | 24 |
售价(万元/台) | 25 | 30 |
(1)请问该厂对这两种型号轿车有哪几种生产方案?
(2)请你帮助该厂设计一种生产方案,使获得的利润最大?最大利润是多少?
查看答案
2010年湛江市某校为了了解400名学生体育加试成绩,从中抽取了部分学生的成绩(满分为40分,成绩均为整数).绘制了频数分布表与频数分布直方图(如图所示),请结合图表信息解答下列问题.
分组 | 频数 | 频率 |
15.5~20.5 | 6 | 0.10 |
20.5~25.5 | | 0.20 |
25.5~30.5 | 18 | 0.30 |
30.5~35.5 | 15 | |
35.5~40.5 | 9 | 0.15 |
合计 | | 1.00 |
(1)补全频数分布表与频数分布直方图;
(2)如果成绩在31分以上(含31分)的同学属于优良,请你估计全校约有多少人达到优良水平;
(3)加试结束后,校长说:“2008年,初一测试时,优良人数只有90人,经过两年的努力,才有今天的成绩….”假设每年优良人数增长速度一样,请你求出每年的平均增长率(结果精确到1%).
查看答案