满分5 > 初中数学试题 >

已知在平面直角坐标系中,直线与x轴,y轴相交于A,B两点,直线与AB相交于C点,...

已知在平面直角坐标系中,直线manfen5.com 满分网与x轴,y轴相交于A,B两点,直线manfen5.com 满分网与AB相交于C点,点D从点O出发,以每秒1个单位的速度沿x轴向右运动到点A,过点D作x轴的垂线,分别交直线manfen5.com 满分网和直线manfen5.com 满分网于P,Q两点(P点不与C点重合),以PQ为边向左作正△PQR,设正△PQR与△OBC重叠部分的面积为S(平方单位),点D的运动时间为t(秒)
(1)求点A,B,C的坐标; 
(2)若点M(2,3manfen5.com 满分网)正好在△PQR的某边上,求t的值;
(3)求S关于t的函数关系式,并写出相应t的取值范围,求出D在整个运动过程中s的最大值.

manfen5.com 满分网
(1)令y=0,可求A点的横坐标;令x=0,可求B点的横坐标;直线与直线联立可求C点坐标; (2)本题只需考虑点M(2,3)正好在△PQR的某边上,求出t的取值即可. (3)本题要分5种情况进行讨论.当0≤t≤时;当<t<3时;当t=3时;当3<t≤时;当≤t≤6时.讨论求出S的最大取值. 【解析】 (1)令y=0,可求A点的横坐标为:6; 故A点坐标为;(6,0), 令x=0,可求B点的纵坐标为:(0,6); 直线与直线联立可求C点坐标为:(3,3); (2)当M在QP上或在RQ上以及RP上时, 分别求出:,,t3=2; (3) , 因为S的最大值在范围内取到,,开口向下,对称轴直线x=9,函数的自变量部分图象在对称轴的左侧,S随t的增大而增大 故当t=6时,.
复制答案
考点分析:
相关试题推荐
已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.
(1)如图①,当∠MAN点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:______
(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;
(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)
manfen5.com 满分网
查看答案
现有一个种植总面积为540m2的矩形塑料温棚,分垄间隔套种草莓和西红柿共24垄,种植的草莓或西红柿单种农作物的总垄数不低于10垄,又不超过14垄(垄数为正整数),它们的占地面积,产量、利润分别如下:
占地面积(m2/垄)产量(千克/垄)利润(元/千克)
西红柿301601.1
草莓15501.6
(1)若设草莓共种植了x垄,通过计算说明共有几种种植方案分别是哪几种;
(2)在这几种种植方案中,哪种方案获得的利润最大?最大利润是多少?
查看答案
如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A(0,2),B(5,2)C(6,0),解答下列问题:
(1)请在图中确定该圆弧所在圆心D点的位置,D点坐标为______
(2)连接AD,CD,求⊙D的半径(结果保留根号);
(3)求扇形DAC的面积.(结果保留π)

manfen5.com 满分网 查看答案
初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了______名学生;
(2)将图①补充完整;
(3)求出图②中C级所占的圆心角的度数;
(4)根据抽样调查结果,请你估计该市近20 000名初中生中大约有多少名学生学习态度达标?(达标包括A级和B级)
manfen5.com 满分网
查看答案
如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(取manfen5.com 满分网=1.732,结果精确到1m)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.