满分5 > 初中数学试题 >

设△A1B1C1的面积是S1,△A2B2C2的面积为S2(S1<S2),当△A1...

设△A1B1C1的面积是S1,△A2B2C2的面积为S2(S1<S2),当△A1B1C1∽△A2B2C2,且manfen5.com 满分网时,则称△A1B1C1与△A2B2C2有一定的“全等度”.如图,已知梯形ABCD,AD∥BC,∠B=30°,∠BCD=60°,连接AC.
(1)若AD=DC,求证:△DAC与△ABC有一定的“全等度”;
(2)你认为:△DAC与△ABC有一定的“全等度”正确吗?若正确,说明理由;若不正确,请举出一个反例说明.manfen5.com 满分网
(1)先过点D作DE⊥AC,交AC于E,利用AD∥BC,AD=DC,∠BCD=60°,可证∠DAC=∠ACD=∠ACB=30°,那么△ABC和△DAC中就有两组对应角相等,即可求它们相似.可以设DE=x,由于∠DAC=30°,所以AD=2x,AE=x,那么利用等腰三角形三线合一定理,可知AC=2x=AB,于是S△DAC:S△ABC=DA:AB=()2=1:3,而0.3≤≤0.4,所以两三角形有一定的全等度; (2)不正确,举出反例进行论证其错误即可.比如可令∠ACB=40°,则∠ACD=20°,∠DAC=40°,∠BAC=110°,∠ADC=120°,显然两个三角形不相似,当然就不存在全等度了. (1)证明:∵AD=DC ∴∠DAC=∠DCA ∵AD∥BC ∴∠DAC=∠ACB ∵∠BCD=60° ∴∠ACD=∠ACB=30° ∵∠B=30° ∴∠DAC=∠B=30° ∴△DAC∽△ABC 过点D作DE⊥AC于点E, ∵AD=DC ∴AC=2EC 在Rt△DEC中 ∵∠DCA=30°,cos∠DCA== ∴DC=EC ∴= ∴=()2=≈0.33, ∵0.30.4 ∴△DAC与△ABC有一定的“全等度”. (2)【解析】 △DAC与△ABC有一定的△“全等度”不正确. 反例:若 ∠ACB=40°,则△DAC与△ABC不具有一定的“全等度”. ∵∠B=30°,∠BCD=60°, ∴∠BAC=110° ∵AD∥BC ∴∠D=120° ∴△DAC与△ABC不相似 ∴若∠ACB=40°,则△DAC与△ABC不具有一定的“全等度”.
复制答案
考点分析:
相关试题推荐
设A=x+y,其中x可取-1、2,y可取-1、-2、3.
(1)求出A的所有等可能结果(用树状图或列表法求解);
(2)试求A是正值的概率.
查看答案
如图,甲、乙两只捕捞船同时从A港出海捕鱼.甲船以每小时manfen5.com 满分网千米的速度沿西偏北30°方向前进,乙船以每小时15千米的速度沿东北方向前进.甲船航行2小时到达C处,此时甲船发现渔具丢在乙船上,于是甲船快速(匀速)沿北偏东75°的方向追赶,结果两船在B处相遇.
(1)甲船从C处追赶上乙船用了多少时间?
(2)甲船追赶乙船的速度是每小时多少千米?

manfen5.com 满分网 查看答案
“五一黄金周”的某一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩.该小汽车离家的距离s(千米)与时间t(时)的关系可以用图中的曲线表示.根据图象提供的有关信息,解答下列问题:
(1)小明全家在旅游景点游玩了多少小时?
(2)求出返程途中,s(千米)与时间t(时)的函数关系,并回答小明全家到家是什么时间?
(3)若出发时汽车油箱中存油15升,该汽车的油箱总容量为35升,汽车每行驶1千米耗油manfen5.com 满分网升.请你就“何时加油和加油量”给小明全家提出一个合理化的建议.(加油所用时间忽略不计)

manfen5.com 满分网 查看答案
如图,四边形ABCD内接于⊙O,BC为⊙O的直径,E为DC边上一点,若AE∥BC,AE=EC=7,AD=6.
(1)求AB的长;
(2)求EG的长.

manfen5.com 满分网 查看答案
如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角α=20°(B、C在同一水平线上),求目标C到控制点B的距离(精确到1米).
(参考数据sin20°=0.34,cos20°=0.94,tan20°=0.36)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.