设△A
1B
1C
1的面积是S
1,△A
2B
2C
2的面积为S
2(S
1<S
2),当△A
1B
1C
1∽△A
2B
2C
2,且
时,则称△A
1B
1C
1与△A
2B
2C
2有一定的“全等度”.如图,已知梯形ABCD,AD∥BC,∠B=30°,∠BCD=60°,连接AC.
(1)若AD=DC,求证:△DAC与△ABC有一定的“全等度”;
(2)你认为:△DAC与△ABC有一定的“全等度”正确吗?若正确,说明理由;若不正确,请举出一个反例说明.
考点分析:
相关试题推荐
设A=x+y,其中x可取-1、2,y可取-1、-2、3.
(1)求出A的所有等可能结果(用树状图或列表法求解);
(2)试求A是正值的概率.
查看答案
如图,甲、乙两只捕捞船同时从A港出海捕鱼.甲船以每小时
千米的速度沿西偏北30°方向前进,乙船以每小时15千米的速度沿东北方向前进.甲船航行2小时到达C处,此时甲船发现渔具丢在乙船上,于是甲船快速(匀速)沿北偏东75°的方向追赶,结果两船在B处相遇.
(1)甲船从C处追赶上乙船用了多少时间?
(2)甲船追赶乙船的速度是每小时多少千米?
查看答案
“五一黄金周”的某一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩.该小汽车离家的距离s(千米)与时间t(时)的关系可以用图中的曲线表示.根据图象提供的有关信息,解答下列问题:
(1)小明全家在旅游景点游玩了多少小时?
(2)求出返程途中,s(千米)与时间t(时)的函数关系,并回答小明全家到家是什么时间?
(3)若出发时汽车油箱中存油15升,该汽车的油箱总容量为35升,汽车每行驶1千米耗油
升.请你就“何时加油和加油量”给小明全家提出一个合理化的建议.(加油所用时间忽略不计)
查看答案
如图,四边形ABCD内接于⊙O,BC为⊙O的直径,E为DC边上一点,若AE∥BC,AE=EC=7,AD=6.
(1)求AB的长;
(2)求EG的长.
查看答案
如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角α=20°(B、C在同一水平线上),求目标C到控制点B的距离(精确到1米).
(参考数据sin20°=0.34,cos20°=0.94,tan20°=0.36)
查看答案