满分5 > 初中数学试题 >

已知,如图,EB是⊙O的直径,且EB=6,在BE的延长线上取点P,使EP=EB,...

已知,如图,EB是⊙O的直径,且EB=6,在BE的延长线上取点P,使EP=EB,A是EP上一点,过A作⊙O的切线,切点为D,过D作DF⊥AB于F,过B作AD的垂线BH,交AD的延长线于H.当点A在EP上运动,不与E重合时:
(1)是否总有manfen5.com 满分网,试证明你的结论;
(2)设ED=x,BH=y,求y和x的函数关系,并写出x的取值范围.

manfen5.com 满分网
①欲证所求的比例式,只需证得DE∥FH即可.连接BD,设BD与FH的交点为G,由于HD切⊙O于D,根据弦切角定理知∠HDB=∠DEB,在Rt△DEB中,易证得∠DEB=∠FDB,则∠FDB=∠HDB,即可证得△DFB≌△DHB,由此可得BH=BF,即△BFH是等腰三角形,根据等腰三角形三线合一的性质可证得BD⊥FH,而BD⊥DE,则FH∥DE,由此得证. ②由于BH=BF,根据EB的长,可用y表示出EF的值,进而在Rt△DEB中,根据射影定理得到y、x的函数关系式;求x的取值范围时,只需考虑x的最大值即可,当A、P重合时,若连接OD,则OD⊥PH,根据平行线分线段成比例定理,可求得BH的长,进而可得到BF、EF的值,然后根据射影定理即可求得DE的长,由此求得x的取值范围. 【解析】 ①无论点A在EP上怎么移动(点A不与点E重合), 总有 (3分) 证明:连接DB,交FH于G. ∵AH是⊙O的切线,∴∠HDB=∠DEB. 又∵BH⊥AH,BE为直径, ∴∠BDE=90°. 有∠DBE=90°-∠DEB=90°-∠HDB=∠DBH. 在△DFB和△DHB中, DF⊥AB,∠DFB=∠DHB=90°, DB=DB,∠DBE=∠DBH, ∴△DFB≌△DHB.(4分) ∴BH=BF.∴△BHF是等腰三角形. ∴BG⊥FH,即BD⊥FH. ∴ED∥FH,∴(5分) ②∵ED=x,BH=y,BE=6,BF=BH, ∴EF=6-y, 又∵DF是Rt△BDE斜边上的高, ∴△DFE∽△BDE, ∴ 即ED2=EF•EB. ∴x2=6(6-y)即y=-x2+6(7分) ∴ED=x>0, 当A从E向左移动,ED逐渐增大, 当A和P重合时,ED最大, 这时,连接OD,则OD⊥PH, ∴OD∥BH. 又PO=PE+EO=6+3=9,PB=12, ,BH= ∴BF=BH=4,EF=EB-BF=6-4=2. 由ED2=EF•EB,得:x2=2×6=12, ∵x>0,∴x=2 , ∴0<x≤2 , [或由BH=4=y,代入y=-x2+6中,得x=2 ] 故所求函数关系式为y=-x2+6(0<x≤2 ).
复制答案
考点分析:
相关试题推荐
如图,抛物线y=-x2+ax+b与x轴交于A、B两点,交y轴于点C,且∠BAC=α,∠ABC=β,tanα-tanβ=2,∠ACB=90°.
①求抛物线的解析式;
②若抛物线顶点为P,求S四边形ABPC

manfen5.com 满分网 查看答案
已知抛物线y=x2-2x+m与x轴有两个不同交点A(x1,0)、B(x2,0)并且x1<x2,x12+x22=4,
①求这条抛物线的解析式;
②设抛物线的顶点为C,P是抛物线上一点,且∠PAC=90°,求P点坐标及△PAC内切圆的面积.
查看答案
如图,在等腰直角三角形ABC中,AB=1,∠A=90°,点E为腰AC的中点,点F在底边BC上,且FE⊥BE,求△CEF的面积.

manfen5.com 满分网 查看答案
某水库建有10个泄洪闸,现在水库的水位已超过了安全线.上游河水还在按一不变的速度增加,为了防洪,需调节泄洪速度.假设每个闸门泄洪的速度相同,经测算,若打开一个泄洪闸,30个小时可降至安全线以下;若打开两个泄洪闸,10个小时水位降至安全线以下.现防洪指挥部要求在3个小时内使水位降至安全线以下,问至少同时打开几个闸门?
查看答案
如图,在山顶A处望见一艘飞艇停留在湖面上空(100+50manfen5.com 满分网)米处,观察到飞艇底部标志P处的仰角为45°,又观其湖中之像的俯角为60°,试求山高h(观察时湖面处于平静状态).

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.