满分5 > 初中数学试题 >

如图,已知Rt△ABC和Rt△EBC,∠B=90°.以边AC上的点O为圆心、OA...

如图,已知Rt△ABC和Rt△EBC,∠B=90°.以边AC上的点O为圆心、OA为半径的⊙O与EC相切,D为切点,AD∥BC.
(1)用尺规确定并标出圆心O;(不写作法和证明,保留作图痕迹)
(2)求证:∠E=∠ACB;
(3)若AD=1,manfen5.com 满分网,求BC的长.

manfen5.com 满分网
(1)若⊙O与EC相切,且切点为D,可过D作EC的垂线,此垂线与AC的交点即为所求的O点. (2)由(1)知OD⊥EC,则∠ODA、∠E同为∠ADE的余角,因此∠E=∠ODA=∠OAD,而AD∥BC,可得∠OAD=∠ACB,等量代换后即可证得∠E=∠ACB. (3)由(2)证得∠E=∠ACB,即tan∠E=tan∠DAC=,那么BC=AB;由于AD∥BC,易证得△EAD∽△EBC,可用AB表示出AE、BC的长,根据相似三角形所得比例线段即可求出AB的长,进而可得到BC的值. (1)【解析】 (O即为AD中垂线与AC的交点)或(过D点作EC的垂线与AC的交点等). 能见作图痕迹,作图基本准确即可,漏标O可不扣分(2分) (2)证明:连接OD.∵AD∥BC,∠B=90°,∴∠EAD=90°. ∴∠E+∠EDA=90°,即∠E=90°-∠EDA. 又∵圆O与EC相切于D点,∴OD⊥EC. ∴∠EDA+∠ODA=90°,即∠ODA=90°-∠EDA. ∴∠E=∠ODA;(3分) (说明:任得出一个角相等都评1分) 又∵OD=OA,∴∠DAC=∠ODA,∴∠DAC=∠E. (4分) ∵AD∥BC,∴∠DAC=∠ACB,∴∠E=∠ACB. (5分) (3)【解析】 Rt△DEA中,tanE=,又tanE=tan∠DAC=, ∵AD=1,∴EA=. (6分) Rt△ABC中,tan∠ACB=, 又∠DAC=∠ACB,∴tan∠ACB=tan∠DAC. ∴=,∴可设AB=x,BC=2x, ∵AD∥BC,∴Rt△EAD∽Rt△EBC. (7分) ∴=,即=. ∴x=1, ∴BC=2x=2. (8分)
复制答案
考点分析:
相关试题推荐
如图,AB是⊙O的直径,过A作⊙O的切线,在切线上截取AC=AB,连接OC交⊙O于D,连接BD并延长交AC于E,⊙F是△ADE的外接圆,F在AE上.
求证:(1)CD是⊙F的切线;(2)CD=AE.

manfen5.com 满分网 查看答案
某市有A,B,C,D四个区.A区2003年销售了商品房2千套,从2003年到2007年销售套数(y)逐年(x)呈直线上升,A区销售套数2009年与2006年相等,2007年与2008年相等(如图①所示);2009年四个区的销售情况如图②所示,且D区销售了2千套.
(1)求图②中D区所对扇形的圆心角的度数及2009年A区的销售套数;
(2)求2008年A区的销售套数.
manfen5.com 满分网
查看答案
如图,华庆号船位于航海图上平面直角坐标系中的点A(10,2)处时,点C、海岛B的位置在y轴上,且∠CBA=30°,∠CAB=60°.
(1)求这时船A与海岛B之间的距离;
(2)若海岛B周围16海里内有海礁,华庆号船继续沿AC向C航行有无触礁危险?请说明理由.

manfen5.com 满分网 查看答案
我市第四高级中学与第六高级中学之间进行一场足球比赛,邀请某校两位体育老师及九年级足球迷当裁判.九年级的一位足球迷设计了开球方式.
(1)两位体育老师各掷一枚一元硬币,两枚硬币落地后正面朝上第四高级中学开球,否则第六高级中学开球.请用树状图或列表的方法,求第四高级中学开球的概率;
(2)九年级的另一位足球迷发现前面设计的开球方式不合理,他修改规则:如果两枚硬币都朝上时,第四高级中学得8分,否则第六高级中学得4分,根据概率计算,谁的得分高,谁开球.你认为修改后的规则公平吗?请说明理由;若不公平,请你设计对双方公平的开球方式.
查看答案
先化简(manfen5.com 满分网-manfen5.com 满分网)÷manfen5.com 满分网,然后从-1,1,2中选取一个数作为x的值代入求值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.